
CORBA Utilities
Version 2.1.7, 29 February 2008

Simple-to-use utilities that dramatically simplify the
development and deployment of CORBA applications

Ciaran McHale
Principal Consultant
IONA Technologies

www.CiaranMcHale.com/download/

http://www.CiaranMcHale.com/download/�

Copyright

This software and documentation are distributed under an MIT-style license (shown below),
which basically means you must not remove the copyright notice but, aside from that, you can
use or modify this software and documentation as you want. For example, you can use it in both
open-source and proprietary projects, and you can give away the software and documentation
for free or you can sell it. You can find information about open-source licenses from theOpen
Source Initiative(www.opensource.org).

TM

Copyright© 2008 Ciaran McHale.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the “Software”), to deal in the Software without restriction, in-
cluding without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to
do so, subject to the following conditions:

• The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

• THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONIN-
FRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

Last updated: February 29, 2008

www.opensource.org�

Contents

Preface v
Purpose of the CORBA Utilities. v
Obtaining and Installing the Software. v
How to Read this Book. v
Technical Support. vi
Training Courses . vi
Acknowledgments. vi

1 Tips for Windows 1
1.1 Enabling Filename Completion. 1
1.2 Creating a Shortcut on the Desktop. 2
1.3 Adding Variables to the Windows Environment. 6

2 Importing and Exporting Object References 7
2.1 Introduction. 7
2.2 Servers should Conditionally Export Object References. 8
2.3 Flexibility in Importing/Exporting Object References. 9

2.3.1 Instructions Passed toexportObjRef() 11
2.3.2 Instructions Passed toimportObjRef() 12
2.3.3 C++ Usage. 14
2.3.4 Java Usage. 15

2.4 Implementing Import/Export Algorithms as Java Classes. 16
2.5 Benefits ofimportObjRef() andexportObjRef() 17

3 The corbaloc and corbaname URLs 19
3.1 Introduction. 19
3.2 Thecorbaloc URL . 19
3.3 Thecorbaname URL . 20
3.4 Architectural Support forcorbaloc . 21

3.4.1 Client-side Support forcorbaloc . 21
3.4.2 Server-side Support forcorbaloc . 21

3.5 Bootstrapping Interoperability Problems. 22

i

4 Portability of C++ CORBA Applications 25
4.1 Introduction to the Problem. 25

4.1.1 Portability Problem 1: CORBA Header Files. 26
4.1.2 Portability Problem 2: Stub Code and Skeleton Code Header Files. . . . 26
4.1.3 Portability Problem 3: Old or Standard C++ Header Files. 26

4.2 A Simple Solution. 27
4.3 Issues not Tackled. 30

5 Creation of POA Hierarchies Made Simple 31
5.1 Introduction. 31
5.2 Building A POA Hierarchy. 32

5.2.1 C++ Version . 33
5.2.1.1 Using the POA Hierarchy in a Server Application. 36

5.2.2 Java Version . 38
5.2.2.1 Using the POA Hierarchy in a Server Application. 41

5.3 Server Deployment Models. 42
5.3.1 Specifying a Server Deployment Model withPoaUtility 44
5.3.2 Orbix Server Deployment. 45
5.3.3 Orbacus Server Deployment. 46
5.3.4 TAO Server Deployment. 46
5.3.5 omniORB Server Deployment. 46

5.4 Using Orbix-proprietary Policies. 47
5.4.1 C++ Version . 47
5.4.2 Java Version . 49
5.4.3 Configuration Values for Work Queues. 50

5.5 Porting to Other CORBA Products. 51
5.5.1 C++ Version . 51
5.5.2 Java Version . 51

6 Orbix Administration Made Simple 53
6.1 Introduction. 53
6.2 What is an Implementation Repository (IMR). 54

6.2.1 The CORBA Concept of an Implementation Repository. 55
6.2.2 The Orbix Implementation Repository. 55
6.2.3 What is Stored in the Implementation Repository?. 56

6.3 Building Task-based Utilities withitadmin 58
6.3.1 Overview of Tcl Syntax . 59

6.4 Usingorbix srv admin . 61
6.5 Usingorbix set config vars . 65
6.6 Usingorbix notify service . 66
6.7 Usingorbix ns on fixed port . 68
6.8 Using the Utilities to Learn Aboutitadmin 70
6.9 Useful Configuration Variables. 71

ii

6.9.1 Size of the Thread Pool in Multi-threaded Servers. 72
6.9.1.1 Warning for Java Users. 72

6.9.2 Specifying References for CORBA Services. 73
6.9.3 Loading Extra Plug-ins. 73
6.9.4 Controlling Diagnostic Messages. 74

6.9.4.1 Controlling the Destination of Diagnostics. 74
6.9.4.2 Log Filters. 75
6.9.4.3 Obtaining Per-request Diagnostics. 76

6.9.5 Avoiding POA name clashes. 76
6.9.6 Recycling Connection Resources. 76

6.9.6.1 Recycling Connections for Other Protocols. 77

7 Generic Synchronization Policies in C++ 79
7.1 Introduction. 79
7.2 Scoped Locks. 79
7.3 Generic Synchronization Policies. 81

7.3.1 The Mutex and Readers-writer Policies. 82
7.3.2 The Producer-consumer Policy. 82
7.3.3 The Bounded Producer-consumer Policy. 83

7.4 Generic Synchronization Policies in C++. 83
7.5 Support for GSPs in Other Languages. 86
7.6 A Critique of Generic Synchronization Policies. 86

7.6.1 Strengths of GSPs. 86
7.6.2 Potential Criticisms of GSPs. 88

7.7 Issues Not Addressed by GSPs. 88
7.7.1 Thread Cancellation. 88
7.7.2 Timeouts . 89
7.7.3 Lock Hierarchies. 89

7.8 GSP Class Library . 89
7.9 Acknowledgments . 90

Bibliography 91

iii

iv

Preface

Purpose of the CORBA Utilities

TheCORBA Utilitiespackage has grown organically from the real-world experiences I have had
over the last 12 years in my work as a consultant and trainer for IONA Technologies. This
collection of utilities provides both software and practical advice that dramatically simplify the
development and deployment of CORBA applications. I have used them to speed up the devel-
opment of applications that are easy to write and maintain, flexible in how they are deployed,
and portable to different CORBA products. A lot of people, both inside IONA and elsewhere,
also have found these utilities to be helpful.

Obtaining and Installing the Software

The CORBA Utilities package (including both the software and documentation) is available at:
www.CiaranMcHale.com/download/. The author usually announces a new release on thecomp.
object.corba newsgroup. If you would like to receive an email notification whenever a new
version of the CORBA Utilities package has been released then send an email to the author (Cia-
ran@CiaranMcHale.com). Your email address will be usedonly for the purposes of notifying
you that a new version of the CORBA Utilities package is available; your email address willnot
be shared with other people/organizations, and you willnot receive any SPAM email from the
author.

TheREADME-unix.txt andREADME-windows.txt files in the top-level directory of
the distribution contain instructions for installing the CORBA Utilities package.

How to Read this Book

In general, each of the CORBA Utilities can be used independently of the others. This means
that you donothave to read this book from start to finish. Instead, just read the individual chapter
for the utility that is of interest to you. The implementations of some of the C++ classes rely
upon the portability header files (Chapter4). However, that is an implementation detail, and you
donot need to read the Chapter4 unless the subject matter is of interest to you.

v

http://www.CiaranMcHale.com/download/�
mailto:Ciaran@CiaranMcHale.com�
mailto:Ciaran@CiaranMcHale.com�

Technical Support

The CORBA Utilities package is not an official product of IONA Technologies. Instead, it has
been developed and is maintained by Ciaran McHale, who is a Principal Consultant at IONA
Technologies. Bug reports, requests for enhancements and miscellaneous comments should be
sent by email to:Ciaran@CiaranMcHale.com.

Training Courses

Since developing the CORBA Utilities, the author has completely overhauled IONA’s CORBA
development training courses so that they now embody the CORBA Utilities package. For ex-
ample, the courses:

• Discuss both the raw CORBA APIs for creating POAs and thePoaUtility class (Chap-
ter5). Students usually agree that thePoaUtility class is far simpler to use.

• Discuss the raw CORBA APIs for importing and exporting object references via files
and the Naming Service, plus theimportObjRef() and exportObjRef() func-
tions (Chapter2). Students can appreciate the ease-of-use and flexibility offered by the
latter.

• Source code portability is stressed throughout the training courses. The exercise system of
the C++ course makes use of the portability header files (Chapter4). In fact, the source
code of the entire C++ exercise system (about 15,000 lines of code) compiles cleanly
with Orbix, Orbacus, TAO and omniORB. Likewise, the entire source code of the Java
exercise system compiles cleanly with Orbix and Orbacus. We may consider enhancing
the training courses to cover other open-source CORBA implementations in the future, if
there is demand.

If you are impressed with the high quality and practical advice of the CORBA Utilities package
then you will probably also find the training courses to be equally impressive. You can find
details of these training courses on the IONA web site (www.iona.com).

Acknowledgments

First, thank you to: Roland Schnir for contributing Chapter1 (Tips for Windows); Adrian Trena-
man for porting theimportObjRef() andexportObjRef() functions (Chapter2) from
C++ to Java; Perry Russell for providing TAO support; and Duncan Grisby for his help that made
the omniORB port possible. Thanks also to Oliver Kellogg who has given me information that
will help me port the utilities to other CORBA implementations (although, unfortunately, that
will have to wait until I have more spare time).

Second, hank you to people who have given me feedback on the utilities that has allowed
me to mature them: Adrian Trenaman, Brian Kelly, Donal Arundel, Michael McKnerney, Perry
Russell, Rebecca Bergersen and Steve Vinoski.

vi

mailto:Ciaran@CiaranMcHale.com�
http://www.iona.com�

Third, thank you to others who have helped, in one way or another, with the practical issues
of making the CORBA Utilities freely available: Jane Merritt, Klaus Hofmann zur Linden, Neil
Kenealy, Stephen Zangerl-Salter, and Roland Tritsch.

Finally, although the CORBA Utilities have been available free-of-charge for several years,
they were originally released under a license that did not qualify as open source. Thank you to
IONA for agreeing to changing the copyright so the CORBA Utilities are now open source.

vii

viii

Chapter 1

Tips for Windows

1.1 Enabling Filename Completion

Some UNIX shells perform filename completion whenever you hit the TAB key. This capability
can be enabled for Windows command shells.

First, run theregedit utility, with the following sequence of mouse clicks:

Start→ Run

Then typeregedit in the dialog box and clickOK.

Within regedit , navigate down to one of the following entries. If you have administrator
privileges on your Windows machine then use:

HKEY LOCAL MACHINE→ SOFTWARE→ Microsoft→ Command Processor

If you donot have administrator privileges then use:

HKEY CURRENTUSER→ SOFTWARE→ Microsoft→ Command Processor

1

2 CHAPTER 1. TIPS FOR WINDOWS

Double click onCompletionChar and enter the value 9 hex, which is the ASCII code for
the TAB key.

Then click onOK, and exit fromregedit . From now on, whenever you press the TAB key
you will activate filename completion. Note that this will work in anynewcommand windows
that you create. It will not work in any command windows that you hadalreadycreated prior to
changing theCompletionChar entry inregedit .

1.2 Creating a Shortcut on the Desktop

When using a command-line based development tool on a Windows machine, you typically have
to set some environment variables, such asPATH, CLASSPATH, JAVA HOME, and also set some
environment variables that are specific to the development tool. If you will be using the same
development toolon a daily basisthen it is probably best to set the relevant environment variables
in theEnvironment Variablesdialog box, which is discussed in Section1.3on page6. However,

1.2. CREATING A SHORTCUT ON THE DESKTOP 3

sometimes you may wish to just experiment with an evaluation version of a development tool,
or perhaps you need to switch between different development tools (or different versions of the
same tool) on a regular basis. In such cases, it can be more convenient to create a desktop shortcut
that opens a new command window and automatically runs a batch file to set up environment
variables within that command window. You can create several such shortcuts—one for each
development tool.

First, you should create a batch file that sets whatever environment variables you want. Use
your favorite text editor to create this file. Make sure that it has a.bat file extension.

You then create a shortcut on the desktop that, when activated, launches a new command
window and automatically runs the batch file. Creating such a shortcut is done with a few mouse
clicks.

Right click on the desktop and selectNew→ Shortcut

This then starts a wizard that guides you through the process. In the first dialog box of the
wizard, typecmd. This specifies that the shortcut will be for a command window. Then click on
Next.

4 CHAPTER 1. TIPS FOR WINDOWS

In the next dialog box, you must specify a name for the shortcut. For example, if you will be
using this shortcut for Orbix then you might call itOrbix shell .

Then click onFinish. You now have an icon namedOrbix shell on the desktop.

Right click on the shortcut icon. This allows you to change theProperties.

1.2. CREATING A SHORTCUT ON THE DESKTOP 5

Within the properties dialog box, select theShortcuttab.

Add "/k <full-path-to-your-batch file>" to theTargetfield. Also, use the

6 CHAPTER 1. TIPS FOR WINDOWS

Start in field to specify in which directory you want the newly launched command window to
start. You can optionally select some of the other tabs to modify other properties.

When you are happy, click onApplyand thenOK.

1.3 Adding Variables to the Windows Environment

If you will be using the same development tool on a daily basis then it is probably best to set the
relevant environment variables in theEnvironment Variablesdialog box. In Windows NT, you
access this dialog box with the following sequence of mouse clicks:

Start→ Settings→ Control Panel→ System→ Environment

In Windows 2000, you use a slightly different sequence of mouse clicks:

Start→ Settings→ Control Panel→ System→ Advanced→ Environment

Chapter 2

Importing and Exporting Object
References

2.1 Introduction

Although a CORBA server may contain many objects, it is typical for just one or two of these
objects to be the initial point(s) of contact for client applications. For example, consider a server
that contains oneFooFactory object and manyFoo objects. When the server starts up, it
mightexport(advertise) an object references for its FooFactory object. When a client application
starts, itimports the reference to theFooFactory object and then invokes, say,lookup()
or create() operations on it to get access to someFoo objects. The pseudo-code below
illustrates the main() function of a typical CORBA server that exports one object reference:

1 main(int argc, char ** argv)
2 {
3 orb = CORBA::ORB init(argc, argv);
4 obj = ...;
5 exportObjRefToNamingService(obj, ...);
6 orb->run();
7 }

The above code initializes CORBA (line 3). It then creates one or more objects (line 4) and
exports one of these (line 5) to, say, the Naming Service, before going into the event loop (line 6)
to receive incoming requests. For the purposes of brevity, some details have been omitted, such
as creation of a POA hierarchy and activation of POA managers. The above code contains two
common flaws:

1. The server unconditionally (re-)exports the object reference every time the server is run.
Doing this might appear to be a harmless practice, but it can cause problems in some kinds
of deployment.

2. The server is hard-coded to export the object reference to the Naming Service (line 5). Al-
though the Naming Service is a popular place for exporting object references, the decision

7

8 CHAPTER 2. IMPORTING AND EXPORTING OBJECT REFERENCES

on where to export object references should be left to deployment time rather than being
hard-coded at compilation time. For example, some users may prefer to export object ref-
erences with another technology, such as, say, a Trading Service, a file, a database or FTP.
A server that is hard-coded to export object references with one technology can prove to
be inconvenient.

The rest of this paper discusses these two problems and explains how they can be overcome
in simple, yet very effective ways.

2.2 Servers should Conditionally Export Object References

The pseudo-code below illustrates a good, high-level structure for a server that exports one object
reference:

1 main(int argc, char ** argv)
2 {
3 orb = CORBA::ORB init(argc, argv);
4 parseCmdLineArgs(argc, argv, exportMode, runMode);
5 obj = new ...;
6 if (exportMmode) {
7 exportObjRef(orb, obj, "...");
8 }
9 if (runMode) {

10 orb->run();
11 }
12 }

The above code initializes CORBA (line 3) and then parses any remaining command-line
arguments (line 4). Very importantly, the code checks for the presence of command-line options
called, say,-export and -run and sets boolean variablesexportMode and runMode to
true if these options are used (line 4). The server exports its main object reference (line 7) only if
the-export option was used. Likewise, it goes into the event loop (line 10) only if the-run
option was used.

Designing a server to support the -export and -run options provides useful flexibility. For
example:

1. Some people may wish to re-export object referencesevery time a server is restarted.
Developers typically find this mode of operation to be convenient. This can be achieved
by always specifyingboth-export and-run command-line options when running the
server.

2. Other people may prefer to export an object reference just once, during the initialinstal-
lation of a server. This can be achieved by running the server with just the-export
option, which causes the server to export its object reference and immediately die (be-
cause the-run option was not given). Once the server has been installed, thereafter the

2.3. FLEXIBILITY IN IMPORTING/EXPORTING OBJECT REFERENCES 9

server can be launched with just the-run option, which will cause the server to go into
its event loop without re-exporting its object reference.

This mode of launching a server without re-exporting its object reference is vitally impor-
tant if the deployment site is running, say, the Orbix Naming Service in replicated mode.
In this mode, one replica of the Naming Service is themasterand it can both read and
update its database. All the other replicas of the Naming Service areslavesand they have
read-only access to the database. If a slave receives a request that involves updating the
database then it forwards that request to the master. If the master replica is not running
then the Naming Service becomesread onlyuntil the master is restarted. The main pur-
pose of having a replicated Naming Service is to prevent it from becoming it a single point
of failure. This scheme works well if theonly time a server exports an object reference is
when the server is being installed and thereafter the server doesnot attempt to re-export
an object reference whenever it is (re-)started. However, if a server insists on always ex-
porting an object reference whenever it is re-started then the server may fail to start up if
the master replica of the Naming Service is currently not running, thereby defeating the
purpose of having a replicated Naming Service.

The point is that developers should provide a mechanism that allows exporting of object
references and running of the server to be performedindependentlyof each other. This then
allows others to choose thepolicy of how the server should be used in practice. This flexibility
is important because developers do not always know how others (such as system administrators)
might like to deploy applications. Failing to provide this flexibility can actually cause significant
hindrance, as discussed above in the case where a deployment site has a replicated Naming
Service.

It may be useful to provide applications with a third option called, say,-install . When a
server is run with this option, it performs all the steps required to install the server, such as set up
configuration files and databases, register the server with the implementation repository and, of
course, export an object reference. Alternatively, some people prefer to write a separate install
utility to perform these steps, rather than embed this functionality into the executable of a server
application. If you do provide an-install command-line option for a server then it isstill
useful to provide the-export option because a user may want to do a normal install initially
and then later re-export the server’s object reference to a different location.

2.3 Flexibility in Importing/Exporting Object References

Some CORBA clients and servers are hard-coded to import and export object references through
text files. This is especially common in demonstration programs in magazine articles or supplied
with CORBA vendor products. This approach is simple but it suffers from a lack of geographic
scalability because it requires that a client and server have access to a shared file system. Obvi-
ously, this will be the case if the client and server are running on the same computer, and itmay
be the case if they are running on different computers in the same local area network. However, it
is rarer for a shared file system to span a wider area network. For this reason, many programmers
are told that it is a bad idea to import and export object references through text files, and that use

10 CHAPTER 2. IMPORTING AND EXPORTING OBJECT REFERENCES

of the Naming Service is better. The result is that many programmers hard-code their clients and
servers to import and export object references through the Naming Service.

In reality, it is a bad idea for a programmer to hard-code use ofanyparticular import/export
technology (such as text files or the Naming Service) in clients or servers. This is because
applications have a habit of being used in ways that their developers did not foresee. For example,
a developer might think that importing/exporting object references with the Naming Service is
a good idea, but an end user might prefer to import/export with a database, or FTP, or even
email. Sometimes the developer works in the same organization where the application is going
to be deployed and hence s/heknowswhat is the preferred technology for importing/exporting
object references. However, even in these situations, there might be a change in the preferred
import/export technology in a few months time for any variety of reasons. For example, as
the organization’s use of CORBA changes, they might prefer to import/export with a Trading
Service rather than with a Naming Service. Alternatively, a system administrator might not want
to allow a Naming Service to be accessed across a firewall and it might become more convenient
to import/export object references through FTP instead. It is time consuming and expensive
to have to modify an existing application’s hard-coded import/export logic whenever a change
occurs in the organization’s preference for how object references should be imported or exported.

A better approach is for an application to offer some flexibility in how it imports/exports
object references. Ideally, an application should be able to import/export object references with
anytechnology (text files, Naming Service, Trading Service, fax, email, FTP, databases or what-
ever), and the choice of which technology to use should be left to deployment time. Achieving
this goal turns out to be surprisingly easy, as we now discuss. Consider the following two utility
functions (shown first in C++ and then in Java):

// C++ version (defined in "import export.h")
namespace corbautil {

CORBA::Object ptr
importObjRef (

CORBA::ORBptr orb,
const char * instructions)

throw(ImportExportException);
void
exportObjRef (

CORBA::ORBptr orb,
CORBA::Object ptr obj,
const char * instructions)

throw(ImportExportException);
};

// Java version
package com.iona.corbautil;
import org.omg.CORBA. * ;
public class ImportExport {

static public org.omg.CORBA.Object
importObjRef (

2.3. FLEXIBILITY IN IMPORTING/EXPORTING OBJECT REFERENCES 11

ORB orb
String instructions)

throws ImportExportException;
static public void
exportObjRef (

ORB orb
org.omg.CORBA.Object obj,
String instructions)

throws ImportExportException;
}

As their names suggest,importObjRef() andexportObjRef() are used to import
and export object references. Both take a reference to anORBas a parameter, so that they can
invoke operations upon it—for example,string to object() , object to string()
or resolve initial references() —as an aid to importing or exporting an object ref-
erence. Both functions also take aninstructions parameter that specifieshow the object
reference should be imported or exported. This parameter will be discussed in detail shortly.
Finally, theexportObjRef() function takes another parameter, which is the object reference
to be exported, whileimportObjRef() returns the imported object reference.

2.3.1 Instructions Passed toexportObjRef()

The instructions parameter passed toexportObjRef() is a string that can be in any of
the following formats:

• " name service# path/in/naming/service"
This usesresolve initial references("NameService") to connect to the
Naming Service and then exports an object reference to the specified path within that
Naming Service.

– Example:" name service# foo/bar/acme"

• " name service# path/in/naming/service @ import-instructions"
A Naming Service is contacted by passing the specifiedimport-instructions to
importObjRef() . The object reference is then exported to the specified path within
that Naming Service.

– Example:" name service# foo/bar/acme @ IOR:..."

– Example:" name service# foo/bar/acme @ corbaloc:..."

• " file# path/to/file"
This exports an object reference by stringifying it and writing it to a file.

– Example:" file# /tmp/obj ref.ior" (full path to file)

– Example:" file# obj ref.ior" (relative filename)

12 CHAPTER 2. IMPORTING AND EXPORTING OBJECT REFERENCES

• " exec# command with IOR place-holder"
This exports an object reference by stringifying it and passing it as a command-line argu-
ment to the specified command that is executed. The IOR place-holder in the command is
replaced with the stringified object reference before the command is executed.

– Example:" exec# /usr/bin/perl some script.pl IOR"

– Example:" exec# cmd /c echo IOR > /tmp/obj ref.ior"

– Example:" exec# nsadmin -b foo/bar/acme IOR"

• " corbaloc server# name"
This uses proprietary APIs in the CORBA product to make the object accessible to a client
that uses acorbaloc URL that contains the server’s host and port, and the specified
name. Currently, this variant works with Orbix, Orbacus, TAO and omniORB.

• " java class# fully.scoped.class.name with optional arguments"
This variant works only with the Java implementation. It exports an object reference
by using Java’s reflection APIs to create an instance of the specified class and invoking
exportObjRef() upon it.

– Example:" java class# full.package.name.of.class"

The"name service#..." and"file#..." variants are provided because users com-
monly want to export with the Naming Service or a file. The"exec#..." variant is provided
as a fallback mechanism in case users want to export an object reference with a different tech-
nology. Specifically, many technologies (such as FTP, databases, email and so on) can be ma-
nipulated by command-line utilities. Exporting an object by such a technology is made possible
by an"exec#..." instruction.

The "exec#..." instruction subsumes the power of both"name service#..." and
"file#..." because it can execute command-line utilities that will bind (advertise) an object
reference into the Naming Service or write a stringified object reference to a file. However, the
"name service#..." and "file#..." variants are provided both for convenience and
for efficiency.

The"java class#..." variant is supported only in the Java implementation. This vari-
ant allows developers to implement alternative algorithms forexportObjRef() in Java. De-
tails on how to write such algorithms are given in Section2.4.

2.3.2 Instructions Passed toimportObjRef()

The instructions parameter passed toimportObjRef() is a string that can be in any of the
following formats:

• " name service# path/in/naming/service"
This usesresolve initial references("NameService") to connect to the
Naming Service and then imports an object reference from the specified path within that
Naming Service.

2.3. FLEXIBILITY IN IMPORTING/EXPORTING OBJECT REFERENCES 13

– Example:" name service# foo/bar/acme"

• " name service# path/in/naming/service @ import-instructions"
A Naming Service is contacted by passing the specifiedimport-instructions to
importObjRef() . An object reference is then imported from the specified path within
that Naming Service.

– Example:" name service# foo/bar/acme @ IOR:..."

– Example:" name service# foo/bar/acme @ corbaloc:..."

• " file# path/to/file"
This reads a stringified object reference from a file.

– Example:" file# /tmp/obj ref.ior" (full path to file)

– Example:" file# obj ref.ior" (relative filename)

• " exec# command"
This imports an object reference by executing the specified command and interpreting the
standard output of that command as a stringified object reference.

– Example:" exec# /usr/bin/perl some script.pl"

– Example:" exec# cat /tmp/obj ref.ior"

– Example:" exec# nsadmin -r foo/bar/acme"

• " java class# fully.scoped.class.name with optional arguments"
This variant works only with the Java implementation. It imports an object reference
by using reflection APIs to create an instance of the specified class and then invoking
importObjRef() upon it.

– Example:" java class# full.package.name.of.class"

• "IOR:..." , "corbaloc:..." or "corbaname:..."
Any of these formats import an object reference by callingstring to object() .

The"name service#..." , "java class#..." and"file#..." instruction vari-
ants have a similar format for bothexportObjRef() and importObjRef() . However,
the "exec#..." variant is different, depending on whether it is used inexportObjRef()
or importObjRef() . In exportObjRef() , "exec#..." takes an IOR place-holder, but
in importObjRef() it does not take an IOR place-holder; instead, the executed command
should write the stringified object reference to its standard output.

In addition, importObjRef() can accept instructions in any of the URL formats that
are specified by the CORBA specification. These include"IOR:.." , "corbaloc:..."
and "corbaname:..." . Since the CORBA specification may define new URL formats in
the future (or a CORBA vendor may support proprietary URL formats),importObjRef()
assumes that any string starting with letters and a colon is a URL and passes it as a parameter to
string to object() .

14 CHAPTER 2. IMPORTING AND EXPORTING OBJECT REFERENCES

2.3.3 C++ Usage

Thebold code in the pseudo-code below shows how a C++ server can export an object reference
with theexportObjRef() function:

1 #include "import export.h"
2 main(int argc, char ** argv)
3 {
4 orb = CORBA::ORB init(argc, argv);
5 parseCmdLineArgs(argc,argv, exportMode, runMode, instructions);
6 obj = ...;
7 if (exportMode) {
8 try {
9 corbautil::exportObjRef(orb, obj, instructions);

10 }
11 catch (const corbautil::ImportExportException & ex) {
12 cerr << ex << endl;
13 orb->destroy();
14 exit(1);
15 }
16 }
17 if (runMode) {
18 orb->run();
19 }
20 orb->destroy();
21 }

The instructions that specify where the object reference is exported to shouldnot be
hard-coded into the application, but rather should be obtained from, say, a command-line argu-
ment (line 5) or a runtime configuration file. IfexportObjRef() fails for any reason then
it throws an exception that contains a descriptive error message. For this reason, the call to
exportObjRef() (line 9) is enclosed in atry-catch clause. If an exception is thrown
then the exception message is printed out and the application gracefully terminates.

The use ofimportObjRef() is similar, and is shown inbold in the pseudo-code below:

1 #include "import export.h"
2 main(int argc, char ** argv)
3 {
4 orb = CORBA::ORB init(argc, argv);
5 parse cmd line args(instructions);
6 try {
7 obj = corbautil::importObjRef(orb, instructions);
8 } catch (const corbautil::ImportExportException & ex) {
9 cerr << ex << endl;

10 orb->destroy();
11 exit(1);
12 }

2.3. FLEXIBILITY IN IMPORTING/EXPORTING OBJECT REFERENCES 15

13 ... // narrow obj and invoke upon it
14 }

2.3.4 Java Usage

Thebold code in the pseudo-code below shows how a Java server can export an object reference
with theexportObjRef() function:

1 import com.iona.corbautil. * ;
2 import org.omg.CORBA. * ;
3 ...
4 public static void main(String[] args)
5 {
6 BooleanHolder exportMode = new BooleanHolder();
7 BooleanHolder runMode = new BooleanHolder();
8 StringHolder instructions = new StringHolder();
9 orb = ORB.init(args);

10 parseCmdLineArgs(args, exportMode, runMode, instructions);
11 obj = ...;
12 if (exportMode.value) {
13 try {
14 ImportExport.exportObjRef(orb, obj,
15 instructions.value);
16 } catch (ImportExportException ex) {
17 System.out.println(ex.getMessage());
18 orb.destroy();
19 System.exit(1);
20 }
21 }
22 if (runMode.value) {
23 orb.run();
24 }
25 }

The instructions that specify where the object reference is exported to shouldnot be
hard-coded into the application, but rather should be obtained from, say, a command-line ar-
gument (line 10) or a runtime configuration file. IfexportObjRef() fails for any reason
then it throws an exception that contains a descriptive error message. For this reason, the call to
exportObjRef() (line 14) is enclosed in atry-catch clause. If an exception is thrown
then the exception message is printed out and the application gracefully terminates.

The use ofimportObjRef() is similar, and is shown inbold in the pseudo-code below:

1 import com.iona.corbautil. * ;
2 import org.omg.CORBA. * ;
3 ...
4 public static void main(String[] args)

16 CHAPTER 2. IMPORTING AND EXPORTING OBJECT REFERENCES

5 {
6 StringHolder instructions = new StringHolder();
7 orb = ORB.init(args);
8 parseCmdLineArgs(args, instructions);
9 try {

10 obj = ImportExport.importObjRef(orb,
11 instructions.value);
12 } catch (ImportExportException ex) {
13 System.out.println(ex.getMessage());
14 orb.destroy();
15 System.exit(1);
16 }
17 ... // narrow obj and invoke upon it
18 }

2.4 Implementing Import/Export Algorithms as Java Classes

The ImportExportAlgorithm interface (defined in thecom.iona.corbautil pack-
age) defines the signatures of theimportObjRef() andexportObjRef() methods. If
you write a Java class that implements this interface then you can use that class to import/export
object references by using the"java class#full.package.name.of.class" variant
of instructions.

The code below is from theImportExportExampleAlgorithm class that is provided
in thecom.iona.corbautil package. This code imports/exports object references through
standard input/output and provides an example of how to write your own Java classes to im-
port/export object references.

package com.iona.corbautil;
import org.omg.CORBA. * ;
import java.io. * ;
public class ImportExportExampleAlgorithm
implements ImportExportAlgorithm
{

public void exportObjRef(
ORB orb,
org.omg.CORBA.Object obj,
String instructions)

throws ImportExportException
{

String strIOR = null;
try {

strIOR = orb.object to string(obj);
} catch(Exception ex) {

throw new ImportExportException(
"export failed for instructions ‘"

2.5. BENEFITS OFIMPORTOBJREF() AND EXPORTOBJREF() 17

+ instructions
+ "’: object to string() failed: " + ex);

}
System.out.println("instructions = ‘"

+ instructions + "’");
System.out.println("IOR = " + strIOR);

}
public org.omg.CORBA.Object importObjRef(

ORB orb,
String instructions) throws ImportExportException

{
System.out.println("instructions: " + instructions);
System.out.println("Enter a stringified obj ref: ");
try {

BufferedReader stdin = new BufferedReader(
new InputStreamReader(System.in));
String strIOR = stdin.readLine();
return orb.string to object(strIOR);

} catch (Exception ex) {
throw new ImportExportException(

"import failed for "
+ "instructions ‘" + instructions
+ "’: error importing a stringified "
+ "object reference from the console: "
+ ex);

}
}

}

2.5 Benefits ofimportObjRef() and exportObjRef()

The importObjRef() andexportObjRef() functions offer several benefits:

• Applications that useimportObjRef() and exportObjRef() do not have to be
hard-coded to use one specific import/export technology, but rather can choose which im-
port/export technology to use at runtime. Thus, an important decision is moved from
being a compile-time choice made by developers to being a deployment time choice made
by users.

• These utility functions can protect developers from vendor lock-in. For example, some
CORBA vendors provide proprietary load-balancing enhancements to their implementa-
tions of the Naming Service. Applications no longer need to use proprietary APIs to export
an object reference to a load-balancing Naming Service. Instead, a runtime configuration
file or command-line argument can specify an"exec#..." variant of instructions to
export an object reference to the load-balancing Naming Service using a vendor-supplied

18 CHAPTER 2. IMPORTING AND EXPORTING OBJECT REFERENCES

command-line utility. If the CORBA vendor does not supply such a command-line utility
then the developer canwrite their own such utility, or implement a Java class that provides
this functionality.

• The flexibility provided byimportObjRef() andexportObjRef() helps tosim-
plify application code. As the code shown earlier illustrates, usingimportObjRef()
andexportObjRef() in applications requires remarkably few lines of code: far fewer
than a developer would write if using the raw API of, say, the Naming Service. Fur-
thermore, not only do developers have to write fewer lines of code, the developers are
also insulated from some of the complexity of the Naming Service API (or some other
import/export technology).

Chapter 3

The corbaloc and corbaname URLs

3.1 Introduction

URLs used on the world wide web (WWW) begin with the name of a protocol, followed by
":" , for example,"http:" , "ftp:" or "file:" . A stringified object reference begins with
"IOR:" so this also looks similar to a URL.

In early versions of CORBA, the only kind of string parameter that could be passed to
string to object() was a stringified object reference. CORBA has now matured to al-
low otherURL-like strings to be passed as parameters tostring to object() . A CORBA
product may optionally support the"http:" , "ftp:" and"file:" formats. The seman-
tics of these is that they provide details of how to download a stringified IOR (or, recursively,
download another URL that will eventually provide a stringified IOR).

Although support for"http:" , "ftp:" and"file:" is optional, all CORBA products
must support"corbaloc:" and"corbaname:" , which are two URLs defined by the OMG.
The purpose of these is to provide a human readable/editable way to specify a location where an
IOR can be obtained.

3.2 Thecorbaloc URL

Some examples ofcorbaloc URLs are shown below:

corbaloc:iiop:1.2@host1:3075/NameService
corbaloc:iiop:host1:3075,iiop:host2:3075/NameService

The first URL specifies that an IOR can be obtained by using version 1.2 of the IIOP pro-
tocol to send aLocateRequestmessage with parameter"NameService" to port 3075 on host
host1 .

The second URL is different in two ways. First, by omitting"1.2@" , it uses the default ver-
sion (1.0) of the IIOP protocol. Second, the URL specifies two<host>:<port> addresses
rather than one. In general, any number of<host>:<port> addresses can be specified, sep-
arated by commas. This second form is used to provide fault tolerance: theLocateRequest

19

20 CHAPTER 3. THECORBALOCAND CORBANAMEURLS

message will be sent to one of the addresses in the list; if that<host>:<port> cannot be
contacted then another address in the list will be tried, and so on.

Many parts of thecorbaloc URL have default values:

• The default protocol isiiop .

• If the protocol isiiop then the defaultversionof IIOP that is used is 1.0. It is advisable
to specify the most recent version of IIOP that is understood by both the client and server
application. This is because more modern versions of IIOP tend to have better capabilities
that might make client-server interaction more efficient.

• The default port number is 2809. This is the port that the Internet Assigned Numbers
Authority (www.iana.org) has assigned for use withcorbaloc .

The CORBA specification currently specifies two protocols that can be used incorbaloc
URLs. One protocol isiiop , which has already been discussed. The other protocol is called
rir , which seems like a strange name until you realize that it is an acronym forresolve initial
references. Unsurprisingly, this protocol specifies that an object reference should be obtained by
calling theresolve initial references() operation, passing the specified name as a
parameter. For example, thecorbaloc URL below specifies that an IOR should be obtained
by callingresolve initial references("NameService") :

corbaloc:rir:/NameService

One benefit of therir protocol is that allowsstring to object() to subsume the function-
ality of resolve initial references() . For example, instead of an application being
hard-coded to find the Naming Service by passing"NameService" to resolve initial
references() , an application can now be hard-coded to find the Naming Service by obtain-
ing a string from a command-line argument or a configuration file and passing this tostring
to object() . If the string happens to be"corbaloc:rir:/NameService" then it is
just as if the programmer had usedresolve initial references() , but now there is
the flexibility for the string parameter to be a stringified IOR or acorbaloc URL that uses the
iiop protocol. In this way, applications have some extra flexibility in how they find a CORBA
Service.

The rir protocol is not used often incorbaloc URLs. However, it is used more com-
monly in corbaname URLs, which we now discuss.

3.3 Thecorbaname URL

A corbaname URL is acorbaloc that specifies how to contact the Naming Service, followed
by "#" and then a name within the Naming Service. Some examples are shown below:

corbaname::foo.bar.com:2809/NameService#x/y
corbaname::host1,:host2,:host3/NameService#x/y
corbaname:rir:/NameService#x/y

http://www.iana.org�

3.4. ARCHITECTURAL SUPPORT FORCORBALOC 21

Passing of the above strings as a parameter tostring to object() causes the Naming
Service to be located andresolve str() to be invoked to obtain an IOR from the Naming
Service. As the above examples illustrates, acorbaname URL can use either theiiop or rir
protocols to locate the Naming Service.

3.4 Architectural Support for corbaloc

3.4.1 Client-side Support forcorbaloc

Thestring to object() operation has built-in support forcorbaloc andcorbaname
URLs:

• If the parameter tostring to object() starts with"IOR:" then the operation treats
it as a stringified object reference and builds a corresponding proxy.

• If the parameter starts with"corbaloc:rir" then thestring to object() op-
eration callsresolve initial references() and passes the specified name as a
parameter.

• If the parameter is acorbaloc URL that uses theiiop protocol then the operation opens
a socket connection to the specified host and port, and sends aLocateRequestmessage,
using the specified name as theobject key in the header of the message. The IOR
embedded in the returnedLocateReplymessage is used as the return value ofstring
to object() . An important point to note is thatcorbaloc is built on top ofexisting
low-level GIOP messages so the OMG didnot have to define a new version of GIOP to
supportcorbaloc URLs.

• If the parameter tostring to object() is acorbaname URL then the embedded
corbaloc details are use to locate a Naming Service. Thenstring to object()
invokesresolve str() on the Naming Service, passing it the string after the embedded
"#" as a parameter. The IOR returned fromresolve str() is used as the return value
of string to object() .

3.4.2 Server-side Support forcorbaloc

CORBA doesnot standardize the server-side support forcorbaloc URLs, nor even theter-
minologyfor this server-side support. This means that CORBA products provide proprietary
mechanisms, often with proprietary terminology. For example:

• The Orbix implementation repository has built-in, server-side support forcorbaloc
URLs, and this is referred to asnamed keys. A named key is a mapping from thename
component in acorbaloc URL to a stringified IOR. Thenamed key sub-commands
of the itadmin administration utility are used tocreate , show, list anddelete
named keys. By default, the Orbix implementation repository listens on port 3075 so
corbaloc URLs should be formatted as shown below:

22 CHAPTER 3. THECORBALOCAND CORBANAMEURLS

corbaloc::<host-of-IMR>:3075/<name>

When theitconfigure utility is used to set up an Orbix domain, named keys are auto-
matically created for whatever CORBA Services are added to the domain. For example, if
the domain has a Naming Service then a named key calledNameService is created.

For a long time, Orbix did not expose APIs for embedding server-sidecorbaloc support
in normal server applications. Orbix 6.1 Service Pack 1 is the first version of Orbix to
expose these APIs.

• Orbacus provides some proprietary APIs (in theBootManager interface) that can be
used by developers to embed server-sidecorbaloc support in their own server appli-
cations. These APIs are used by the Orbacus implementation repository, which looks up
name→stringified-IOR mappings in a configuration file.

• TAO provides proprietary APIs that have different names, but similar semantics, to those
of Orbacus.

• OmniORB server-side support forcorbaloc URLs relies upon placing objects into a
specific, predefined POA. OmniORB also provides a prewritten server application called
omniMapper that listens on a specified port and looks upname→stringified-IOR map-
pings in a configuration file.

As can be seen, each CORBA product has its own different “look and feel” for server-side sup-
port ofcorbaloc URLs. Because of this, there isnoportable way for a CORBA server to use a
corbaloc URL to advertise one of its own objects. Having said that, theexportObjRef()
utility function supports a"corbaloc server#..." format of instructions (page12) that
encapsulates the proprietary APIs of Orbix, Orbacus, TAO and omniORB. Developers concerned
with writing applications that must be portable to a wider range of CORBA products should use
corbaloc URLs only for CORBA Services, for example, the Naming Service, Notification
Service, Trading Service and so on.

3.5 Bootstrapping Interoperability Problems

One obvious requirement for interoperability between different CORBA products is that they
must be able to speak the same on-the-wire protocol (IIOP). However, that by itself it not suf-
ficient. Another, less obvious requirement for interoperability is for one CORBA product to be
able tofind, say, the Naming Service or the Notification Service of another CORBA product. For
example, how can an Orbix clientfind (connect to) the Naming Service of an Orbacus instal-
lation. This is often called a bootstrapping problem. Thecorbaloc andcorbaname URLs
were invented to address such bootstrapping issues, as we now discuss.

A CORBA application connects to a CORBA Service—for example, the Naming Service,
Notification Service, and so on—by callingresolve initial references() and pass-
ing the name of the desired service as a parameter. The CORBA specification doesnot specify
how resolve initial references() works (that is an implementation detail), but in

3.5. BOOTSTRAPPING INTEROPERABILITY PROBLEMS 23

most CORBA products this operation looks in a configuration file to find aname-of-CORBA-
service→stringified-IOR mapping1 and then passes the stringified IOR as a parameter to the
string to object() operation. These mappings are normally set up during the installation
and configuration of a CORBA product. To configure, say, Orbix to use an Orbacus Naming
Service is a matter of obtaining a stringified IOR of the Orbacus Naming Service (typically from
the Orbacus configuration file) and copying this into the Orbix configuration file. Then the next
time an Orbix client callsresolve initial references("NameService") , the client
will be directed towards the Orbacus Naming Service. This technique works fine, but it is a bit
cumbersome because stringified IORs are not human readable. However, with the introduction
of corbaloc URLs, the technique becomes much easier. Now, instead of copying a stringified
IOR of the Orbacus Naming Service into the Orbix configuration file, it is sufficient to copy a
corbaloc URL into the Orbix configuration file. The fact thatcorbaloc URLs are easy to
read (and edit) by humans makes it more feasible for an organization to use several different
CORBA products.2

Sometimes, practical or organizational issues may make it awkward to update a configuration
file with a stringified IOR orcorbaloc URL for, say, the Naming Service of another CORBA
product. To work around this, the OMG defined two standard command-line options that all
CORBA products must support.3

The first command-line option takes the form:

-ORBInitRef <name>=<value>

An example is shown below:

-ORBInitRef NameService=corbaloc::host1:3075/NameService

The <value> in <name>=<value> is a stringified IOR or URL that is used ifresolve
initial references() is called with<name> passed as a parameter. This command-line
argument takes precedence over any corresponding information in the CORBA product’s con-
figuration file. You need to specify this command-line optioneachtime you run an application,
so regular use of it can get somewhat tedious. However, this command-line option is useful if,
say, restrictive file permissions prevent them from modifying the configuration file of a CORBA
installation. It can be useful also when trouble-shooting a connectivity problems in a network.

The second command-line option takes the form:

-ORBDefaultInitRef <URL-up-to-but-not-including-final-"/">

Some examples are shown below:

1 For example, the entry in the Orbacus configuration file isooc.orb.service. <service >. The corre-
sponding entry in the Orbix configuration file isinitial references: <service >:reference .

2 It is rare for an organization todeliberately decideto use several CORBA products. However, several CORBA
products may make their way into an organization if different departments or development teams make indepen-
dent choices about which middleware technology they will use, or if the development of CORBA applications is
outsourced to other organizations.

3 When a CORBA application callsORBinit() , it passes command-line arguments as a parameter to
ORBinit() . This provides the mechanism by which command-line arguments are communicated to the CORBA
runtime system.

24 CHAPTER 3. THECORBALOCAND CORBANAMEURLS

-ORBDefaultInitRef corbaloc:iiop:1.2@host1:3075
-ORBDefaultInitRef corbaname::host1/NameService#x/y

A call to resolve initial references("<name>") , results in"/<name>" being
appended to the string provided by the command-line argument after-ORBDefaultInitRef ;
the result of this string concatenation is then passed as a parameter tostring to object() .

The intention of the-ORBDefaultInitRef command-line option is that a user can set
up a centralized store ofname→ IOR mappings. Once this has been done, applications can
be started with a single-ORBDefaultInitRef command-line argument that points to this
centralized store. This is usually more convenient than starting many applications, each with
several-ORBInitRef command-line arguments.

You need to specify the-ORBDefaultInitRef command-line optioneachtime you run
an application so, just as with-ORBInitRef , regular use of it can get tedious. In general, it is
usually more convenient to create/modify a configuration file for a CORBA installation than to
use these command-line options every time you run a CORBA-based application.

If both -ORBInitRef and -ORBDefaultInitRef command-line arguments are used
then the-ORBInitRef arguments take precedence.

Chapter 4

Portability of C++ CORBA Applications

The Portable Object Adapter (POA) specification defines a comprehensive set of APIs that are
provided by CORBA products. This means that a developer should be able to write a CORBA
application that can be re-compiled easily with several CORBA vendor products. This goal has
been met with the Java mapping. Unfortunately, the C++ mapping has one annoying hindrance
to portability: it doesnot specify the names of CORBA-related header files. The practical effect
of this is that a developer must change#include directives for CORBA-related header files
when porting an application to a different CORBA product. At first this may not seem like a big
problem. However, such#include directives will appear in most source-code files. Porting
an application is much easier if non-portable code is concentrated in just a small number of files
rather than being spread thinly over many source-code files. This chapter discusses a simple, yet
effective, technique that minimizes the porting headaches of non-portable#include directives.

4.1 Introduction to the Problem

The program below is quite simple: it creates an ORB (line 13), outputs"Hello, world"
(line 14) and then destroys the ORB (line 15). Atry-catch clause (lines 12–20) is used in
case any of the CORBA APIs throws an exception.

1 #include <omg/orb.hh>
2 #include <it_cal/iostream.h>
3 IT_USING_NAMESPACE_STD
4
5 int
6 main(int argc, char ** argv)
7 {
8 CORBA::ORBvar orb;
9 int exit status;
10
11 exit status = 0;
12 try {
13 orb = CORBA::ORB init(argc, argv);

25

26 CHAPTER 4. PORTABILITY OF C++ CORBA APPLICATIONS

14 cout << "Hello, world" << endl;
15 orb->destroy();
16 }
17 catch (const CORBA::Exception & ex) {
18 cout << ex << endl;
19 exit status = 1;
20 }
21 return exit status;
22 }

The functional code in the application (lines 5–22) is portable across many CORBA products
and operating systems. Unfortunately, the#include directives in the code (lines 1–3) are
not portable: these lines are specific to Orbix. It is these first few lines of code that would
have to be changed if porting the application to another CORBA product. In general, there
are three different portability problems associated with#include ’d filenames for CORBA
applications. These problems are discussed in the following subsections, and then a simple
solution is discussed in Section4.2.

4.1.1 Portability Problem 1: CORBA Header Files

The IDL-to-C++ mapping does not specify the names of CORBA-related header files. For ex-
ample, Orbix defines basic CORBA functionality in the file<omg/orb.hh> , while Orbacus
defines similar functionality in the file<OB/CORBA.h> and TAO uses<tao/corba.h> . In
general, each CORBA product has a different name for this header file.

4.1.2 Portability Problem 2: Stub Code and Skeleton Code Header Files

If you have an IDL file calledfoo.idl then the Orbix stub-code and skeleton-code header files
are calledfoo.hh andfooS.hh , respectively, while the equivalent header files in Orbacus are
called foo.h and foo skel.h , and the TAO versions are calledfooC.h and fooS.h . In
general, each CORBA product uses different names for the generated stub-code and skeleton-
code files.

4.1.3 Portability Problem 3: Old or Standard C++ Header Files

Although, the C++ language dates from the early 1980s, the language was not standardized until
the mid-1990s. In pre-standardized C++, many header files provided with compilers had".h"
extensions, for example<iostream.h> . The standardization committee decided to make two
important changes to standard header files: (1) the".h" extension was dropped, for example,
<iostream.h> became<iostream> ; and (2) the types and global variables defined in these
standard header files were defined in thestd namespace rather than in the global scope, for
example,cout becamestd::cout .

The statement using"namespace std;" can be used to used to refer tostd types and
variables without thestd:: prefix. If a developer wants to write a program that can be compiled

4.2. A SIMPLE SOLUTION 27

with the old or the standard header files then this can be done using the somewhat clumsy coding
idiom shown below:

#ifdef USE OLDHEADERFILES
#include <iostream.h>
#else
#include <iostream>
using namespace std;
#endif

The developer must use similar#ifdef...#else...#endif constructs for all header files
that haveold andstandardcounterparts.

Many CORBA products have been developed so they can be used with old or standard
header files. Developing a CORBA product with such portability in mind means extra work
for a CORBA vendor. Typically it means that the CORBA vendor must provide two versions of
libraries: one built with old header files and the other built with standard header files. This extra
work undertaken by CORBA vendors has resulted in two important benefits. First, it allows a
CORBA product to be made available on platforms that have only the old header files. Second,
even on platforms that have the standard header files, some developers may be forced to use the
old header files because they must link with legacy code that uses the old header files, and the
CORBA product can be used by such developers.

It is common for CORBA products to provide their own abstraction layer that can be used to
easily switch between using old and standard header files. For example, Orbix provides various
header files with names such as<it_cal/iostream.h> , <it_cal/fstream.h> and so
on.1 These files#include either the corresponding old or standard header file, depending on
whether or not the symbolIT_CLASSIC_IOSTREAMSis defined. Also, depending on whether
or not that symbol is defined, the macroIT_USING_NAMESPACE_STD(line 3 of the example
program given in Section4.1) expands out to be either an empty string or the statement"using
namespace std;" .

Developers can choose whether or not they want to make use of a CORBA products abstrac-
tion layer for old and standard header files. Obviously, the advantage of using this abstraction
layer is that it is a pre-written abstraction layer so the developer does not have to re-invent
the wheel. However, there are two disadvantages to using such an abstraction layer. First, the
abstraction layer is proprietary to that CORBA product so use of it makes source code non-
portable to other CORBA products. Second, making use of the abstraction layer typically in-
volves#include -ing at least one CORBA product-specific header file into every.cpp file,
and a developer may not wish to do this in a.cpp file that is otherwise independent of CORBA.

4.2 A Simple Solution

There is an easy way for developers to protect their source code from differences in the names
of include files across CORBA vendor products and also, if desired, between old and standard

1 The "it cal" prefix is derived as follows:"it" is an acronym for IONA Technologies, and"cal" is an
acronym for Compiler Abstraction Layer.

28 CHAPTER 4. PORTABILITY OF C++ CORBA APPLICATIONS

C++ header files. The way to achieve this is for the developer to use his own portability ab-
straction layer. This is remarkably easy to do and takes very little time. This section discusses
such a portability layer that supports Orbix, Orbacus, TAO and omniORB. It should be easy for
readers to extend this to support other CORBA products on an as-needed basis. The principle is
illustrated with file below.

// File: p orb.h
#ifndef P ORBH
#define P ORBH

#if defined(P USEORBIX)
#include <omg/orb.hh>
#elif defined(P USEORBACUS)
#include <OB/CORBA.h>
#elif defined(P USETAO)
#include <tao/corba.h>
#elif defined(P USEOMNIORB)
#include <omniORB4/CORBA.h>

#else
#error "You must #define P USEORBIX, P USEORBACUS, PUSETAO or ..."
#endif

#endif / * P ORBH * /

The above file,p orb.h , is an abstraction layer for the CORBA product-specific header file
that defines basic ORB functionality. The"p " prefix stands forportability. The header file
#include ’s the relevant Orbix-specific header file if the symbolP USEORBIX is defined,
the Orbacus-specific header file ifP USEORBACUSis defined, the TAO-specific header file
if P USETAOis defined, or the omniORB-specific header file ifP USEOMNIORBis defined;
otherwise it generates an error message. It should be trivial to extend this file to support other
CORBA products. For most C++ compilers, the easiest way to define the appropriateP_USE_
<product-name> symbol is through the-D<symbol> command-line option, for example,
-DP USEORBIX.

Another header file that should be written in the same style isp poa.h , which#include ’s
the CORBA product-specific header file that defines the POA APIs.

Portability header files that#include CORBA product-specific stub-code and skeleton-
code header files also need to be written. For an IDL file,foo.idl , these portability header
files might be called, say,p foo stub.h and p foo skeleton.h . The two files below
illustrate the general form of these portability header files. Occurrences offoo andFOOare
written inbold to indicate which parts of the files depend on the name of the IDL file.

// File: p foo stub.h
#ifndef P FOOSTUBH
#define P FOOSTUBH
#if defined(P USEORBIX)

4.2. A SIMPLE SOLUTION 29

#include " foo .hh"
#elif defined(P USEORBACUS)
#include <OB/CORBA.h>
#include " foo .h"
#elif defined(P USETAO)
#include " foo C.h"
#elif defined(P USEOMNIORB)
#include " foo .hh"
#else
#error "You must #define P USEORBIX, P USEORBACUS, PUSETAO or ..."
#endif
#endif / * P FOOSTUBH * /

// File: p foo skeleton.h
#ifndef P FOOSKELETONH
#define P FOOSKELETONH
#if defined(P USEORBIX)
#include " foo S.hh"
#elif defined(P USEORBACUS)
#include <OB/CORBA.h>
#include " foo skel.h"
#elif defined(P USETAO)
#include " foo S.h"
#elif defined(P USEOMNIORB)
#include " foo .hh"
#else
#error "You must #define P USEORBIX, P USEORBACUS, PUSETAO or ..."
#endif
#endif / * P FOOSKELETONH * /

The file templates shown above support Orbix, Orbacus, TAO and omniORB. It should be trivial
to extend them to support other CORBA products. Because these files are so repetitive and they
need to be written for each IDL file used in a project, it is best to write a short script (using Tcl,
Perl, sed or whatever scripting language you prefer) that cangeneratethese portability header
files.

Finally, portability header files can be written that#include the appropriate old or standard
C++ header files. This is illustrated by example below:

#ifndef P IOSTREAMH
#define P IOSTREAMH
#if defined(P USEOLDTYPES)
#include <iostream.h>
#else
#include <iostream>
using namespace std;
#endif
#endif / * P IOSTREAMH * /

30 CHAPTER 4. PORTABILITY OF C++ CORBA APPLICATIONS

As the above example illustrates, if the symbolP USEOLDTYPESis defined then the appropri-
ate old header file is included; otherwise, the standard header file is included and the statement
"using namespace std;" is executed so programmers do not have to use thestd::
prefix.

4.3 Issues not Tackled

This chapter has discussed how a simple technique can dramatically reduce problems in port-
ing applications to use different CORBA products. Some other portability issues exist that are
outside the scope of this chapter, such as:

• There will be differences in Makefiles when porting an application from one CORBA
product to another. For example, flags passed to the IDL compiler and C++ compiler will
change. Other changes will occur in the names of libraries that should be linked into the
application. Also, the names of the generated stub-code and skeleton-code.cpp files will
differ.

• A C++ CORBA product is typically intended to be used with a specific brand of C++
compiler. If you switch from one CORBA product to another then you might also have to
switch to a different brand of C++ compiler.

• Although the CORBA specification describes the high-level functionality of the Imple-
mentation Repository (IMR), the CORBA specification has not standardized the “look and
feel” of the IMR. For this reason, details of how to register a server with the IMR are
different in different CORBA products.

• CORBA has not standardized upon APIs for logging diagnostic messages or for retrieving
runtime configuration information. Many CORBA products provide logging and config-
uration APIs as proprietary enhancements. If you make use of such proprietary APIs in
your application then this will make porting your application to another CORBA product
more difficult.

Chapter 5

Creation of POA Hierarchies Made Simple

The CORBA POA specification is considered by many to be powerful but complex. Actually,
the POA specification is powerful andconceptually simple. Unfortunately, verbose APIs obscure
the simple concepts that are at the heart of the POA specification. It is these verbose APIs that
are largely to blame for the reputation that the POA specification has for being complex.

This chapter discusses a class calledPoaUtility that provides a simplification “wrap-
per” around the POA APIs. The wrapper API contains just three operations that provide all
the power and flexibility previously provided by a dozen operations of the “raw” POA API.
ThePoaUtility class doesnot hide the concepts of the POA. In fact, it is just the opposite:
by replacing a dozen low-level operations with a smaller number of higher-level operations, the
wrapper allows developers to more easily see the underlying simplicity and elegance of the POA.

Currently, thePoaUtility class works “out of the box” with five CORBA products: Or-
bix/C++, Orbix/Java, Orbacus/C++, Orbacus/Java, and TAO. It should be easy to extend support
to other CORBA products and/or languages.

5.1 Introduction

Many people have mixed feelings about the POA specification. On the one hand, it provides
CORBA with a lot of power and flexibility. On the other hand, the POA specification canseem
complex, and this puts a lot of developers off CORBA. This is a shame because the POA speci-
fication is conceptually simple and is actually quite elegant. It is just that verbose APIs obscure
the simple concepts that are at the heart of the POA specification.

This chapter discusses a class calledPoaUtility that provides a simplification “wrap-
per” around the POA APIs. The wrapper API contains just three operations that provide all
the power and flexibility previously provided by a dozen operations of the “raw” POA API.
ThePoaUtility class doesnot hide the concepts of the POA. In fact, it is just the opposite:
by replacing a dozen low-level operations with a smaller number of higher-level operations, the
wrapper allows developers to more easily see the underlying simplicity and elegance of the POA.

Some important benefits of the wrapper API are as follows:

• ThePoaUtility class reduces the learning curve for the POA without sacrificing any

31

32 CHAPTER 5. CREATION OF POA HIERARCHIES MADE SIMPLE

of its power and flexibility. This means that developers will require less time to become
skilled in the use of CORBA.

• Developer productivity is increased. Realistically, developers will be able to create a
server’s POA hierarchy in just a few minutes and with just a few lines of code,without
having to consult any reference documentation. Furthermore, if the creation of a POA
fails (for example, a developer might have assigned it incompatible policies) then the
PoaUtility class throws an exception that contains a self-explanatory message that
helps the developer to quickly diagnose the source of the problem.

• It is common for a CORBA product to allow a server to be deployed (1) with or (2) without
an Implementation Repository, and with both of these options the server can (3) listen on
a fixed port or (4) listen on a port that is chosen by the operating system. Unfortunately,
CORBA does not specify the practical details of how to choose a particular deployment
model for a server application. Instead, such details are left to proprietary extensions pro-
vided by each CORBA product. In some CORBA products, these proprietary extensions
take the form of command-line options or entries in a configuration file. In other CORBA
products, the proprietary extensions take the form of additional APIs, the use of which
must be hard-coded into the source code of a server application. This is unfortunate be-
cause it hinders source-code portability of CORBA applications. ThePoaUtility class
encapsulates use of these proprietary APIs. In doing so, thePoaUtility class greatly
enhances source-code portability of server applications. The encapsulation also has the
benefit of making it trivial for the deployment model to be decided at deployment time
rather than being hard-coded at development time. In this way, server applications become
more flexible.

Currently, thePoaUtility class works “out of the box” with six CORBA products: Or-
bix/C++, Orbix/Java, Orbacus/C++, Orbacus/Java, TAO and omniORB. It should be easy to
extend support to other CORBA products and/or languages. Section5.5on page51 offers some
advice for readers who are interested in porting thePoaUtility class to other CORBA prod-
ucts.

5.2 Building A POA Hierarchy

We introduce thePoaUtility class by showing how it is typically used to construct a POA
hierarchy. Let us assume that you are writing a CORBA server with the following characteristics:

• The server implements three interfaces:Foo, FooFactory (a factory for creatingFoo
objects) andAdministration (used to perform administration-type operations on the
server).

• The server has three POAs, one for each IDL interface. By convention, each POA has a
name that is the same as the name of the IDL interface associated with it. For example,
servants for IDL interfaceFoo are stored in the POA calledFoo.

5.2. BUILDING A POA HIERARCHY 33

• The server requires two POA managers. One POA manager, which we shall call thecore
functionalityPOA manager, is used to control the dispatching of requests to theFoo and
FooFactory POAs. The other POA Manager, which we shall call theadmin functional-
ity POA manager, is used to control the dispatching of requests to theAdministration
POA.

The above functionality can be implemented by a class called, say,PoaHierarchy that
makes use of the functionality provided by thePoaUtility class. A C++ implementation of
this class is presented in Section5.2.1, and a Java version is presented in Section5.2.2.

5.2.1 C++ Version

The declaration of the C++PoaHierarchy class is shown below.

1 #include "PoaUtility.h"
2 using namespace corbautil;
3 class PoaHierarchy : PoaUtility
4 {
5 public:
6 PoaHierarchy(CORBA::ORB_ptr orb,
7 PoaUtility::DeploymentModel deployModel)
8 throw(PoaUtilityException)
9 //--------

10 // Accessors
11 //--------
12 POAManager_ptr core_functionality()
13 { return m_core_functionality. mgr() ; }
14 POAManager_ptr admin_functionality()
15 { return m_admin_functionality. mgr() ; }
16 POA_ptr FooFactory() { return m_FooFactory; }
17 POA_ptr Foo() { return m_Foo; }
18 POA_ptr Administration() { return m_Administration; }
19
20 private:
21 //--------
22 // Instance variables
23 //--------
24 LabelledPOAManager m_core_functionality;
25 LabelledPOAManager m_admin_functionality;
26 POA_var m_FooFactory;
27 POA_var m_Foo;
28 POA_var m_Administration;
29
30 //--------
31 // The following are not implemented
32 //--------

34 CHAPTER 5. CREATION OF POA HIERARCHIES MADE SIMPLE

33 PoaHierarchy();
34 PoaHierarchy(const PoaHierarchy &);
35 PoaHierarchy & operator=(const PoaHierarchy &);
36 };

The following points should be noted:

• The PoaUtility.h file (line 1) defines several types in thecorbautil namespace
(line 2).

ThePoaHierarchy class inherits from thePoaUtility class (line 3).

• The constructor of the class (line 6) takes two parameters: a reference to an ORB and an
enum value that specifies the server’s deployment model. The issue of server deployment
models will be discussed in Section5.3. If anything goes wrong in the constructor then it
throws acorbautil::PoaUtilityException .

• The created POAs and POA Managers are stored in instance variables (lines 24 to 28).
The variable for a POA Manager is of typePoaUtility::LabelledPOAManager ,
which is a class that has two accessor operations:

const char * label();
PortableServer::POAManager_ptr mgr();

• ThePoaHierarchy class defines accessor functions (lines 12 to 18) for the correspond-
ing instance variables (lines 24 to 28).

All the interesting functionality of thePoaHierarchy class is implemented in its construc-
tor, which is shown below. Comments follow after the code.

1 #include "PoaHierarchy.h"
2
3 PoaHierarchy::PoaHierarchy(CORBA::ORB_ptr orb,
4 PoaUtility::DeploymentModel deployModel)
5 throw(PoaUtilityException)
6 : PoaUtility(orb, deployModel)
7 {
8 //--------
9 // Create the POA Managers

10 //--------
11 m_core_functionality =
12 createPoaManager ("core_functionality");
13 m_admin_functionality =
14 createPoaManager ("admin_functionality");
15
16 //--------
17 // Create the FooFactory POA

5.2. BUILDING A POA HIERARCHY 35

18 //--------
19 m_FooFactory = createPoa ("FooFactory",
20 root() , m_core_functionality,
21 "user_id + persistent + use_active_object_map_only");
22
23 //--------
24 // Create the FooFactory/Foo POA
25 //--------
26 m_Foo = createPoa ("Foo",
27 m_FooFactory, m_core_functionality,
28 "system_id + transient + unique_id + retain"
29 "+ use_active_object_map_only");
30
31 //--------
32 // Create the Administration POA
33 //--------
34 m_Administration = createPoa ("Administration",
35 root() , m_admin_functionality,
36 "single_thread_model + persistent + user_id"
37 "+ use_active_object_map_only");
38 }

The following points should be noted:

• The constructor passes its parameters to its parent-class constructor (line 6).

• A POA manager is created by calling the inheritedcreatePoaManager() operation
(lines 11–14), and passing a parameter that specifies a uniquelabel (name) by which the
POA manager will be known to the internals of thePoaUtility class.

• A POA is created by calling the inheritedcreatePoa() operation (lines 19–37). This
operation takes four parameters. The first parameter is the name of the POA to be created.
The second parameter is a reference to its parent POA. The inherited operationroot()
can be used to specify the root POA (lines 20 and 35). The third parameter is a labelled
POA manager that has been previously obtained by callingcreatePoaManager() .
The final parameter is a string of the form"policy + policy + ..." .1 This string
represents a list of policy values that should be applied when creating the POA. The names
of the policy values are lowercase equivalents of theenum values used by the raw POA
APIs, without the module prefix. For example, thePortableServer::PERSISTENT
policy value is represented by"persistent" . The use of lowercase makes it easier for
programmers because most code is written in lowercase.

1 The policy values string can use any combination of whitespace, plus signs or commas as separators between
policy names. Also, leading or trailing separators are ignored. This flexibility was chosen in order to facilitate
developers who wish to use policy value strings that, say, are obtained from a runtime configuration file or have
been generated by a code-generation tool.

36 CHAPTER 5. CREATION OF POA HIERARCHIES MADE SIMPLE

• The C++ language states that a C++ compiler concatenates adjacent string literals. For ex-
ample:"good" "bye" are concatenated to give"goodbye" . This can be used to split a
long "policy + policy + ..." string over several lines (lines 28–29 and 36–37).

• If anything goes wrong then thecreatePoaManager() andcreatePoa() opera-
tions throw an exception (in the form of acorbautil::PoaUtilityException)
that provides details of the CORBA exception thrown and the POA/POA-manager/policy-
list for which the exception applies. Because of this, thePoaHierarchy class doesnot
have a separatetry-catch clause around each call tocreatePoaManager() and
createPoa() to diagnose the source of the problem. Instead, thePoaHierarchy
class lets such exceptions propagate out to themain() function of the application, where
a singletry-catch clause suffices. This will be illustrated in Section5.2.1.1.

• All the useful functionality of thePoaUtility class is available throughpublic op-
erations. Because of this, developers are not restricted to usingPoaUtility by sub-
classing from it. For example, the constructor of thePoaHierarchy class could have
declared a local variable of typePoaUtility instead.

• The PoaUtility class has aroot() operation that can be called to specify the root
POA as a parent of a POA being created withcreatePoa() . However, the root POA
shouldnot be used for storing servants. This is because a feature ofPoaUtility is its
ability to allow POAs or POA Managers to optionally listen on fixed port numbers (this
is discussed in Section5.3) and, unfortunately, thePoaUtility class cannot always
configure the port number on which the root POA listens.

5.2.1.1 Using the POA Hierarchy in a Server Application

The code below illustrates the mainline of a server that uses thePoaHierarchy class. Com-
ments follow after the code.

1 CORBA::ORB_var g_orb;
2 PoaHierarchy * g_poa_h;
3 FooFactory_impl * g_FooFactory_sv;
4 Administration_impl * g_Administration_sv;
5
6 int main(int argc, char ** argv)
7 {
8 PortableServer::ObjectId_var obj_id;
9

10 int exitStatus = 0;
11 try {
12 //--------
13 // Initialize CORBA and create the POA hierarchy
14 //--------
15 g_orb = CORBA::ORB_init(argc, argv);
16 PoaUtility::DeploymentModel deployModel = ...;

5.2. BUILDING A POA HIERARCHY 37

17 g_poa_h = new PoaHierarchy(g_orb, deployModel);
18
19 //--------
20 // Create and activate singleton servants
21 //--------
22 g_FooFactory_sv = new FooFactory_impl();
23 obj_id = ...;
24 g_poa_h->FooFactory() ->activate_object_with_id(
25 obj_id, g_FooFactory_sv);
26 g_FooFactory_sv->_remove_ref();
27 ... // similar code for the Administration singleton
28
29 //--------
30 // Export singleton object references
31 //--------
32 ...
33
34 //--------
35 // Activate POA managers and go into the event loop
36 //--------
37 g_poa_h->core_functionality() ->activate();
38 g_poa_h->admin_functionality() ->activate();
39 g_orb->run();
40 }
41 catch (const CORBA::Exception & ex) {
42 cout << ex << endl;
43 exitStatus = 1;
44 }
45 catch (corbautil::PoaUtilityException & ex) {
46 cout << ex << endl;
47 exitStatus = 1;
48 }
49
50 //--------
51 // Tidy up and terminate
52 //--------
53 delete g_poa_h;
54 if (!CORBA::is_nil(g_orb)) {
55 try {
56 g_orb->destroy();
57 } catch (const CORBA::Exception & ex) {
58 cout << "orb->destroy() failed: " << ex << endl;
59 exitStatus = 1;
60 }
61 }
62 return exitStatus;

38 CHAPTER 5. CREATION OF POA HIERARCHIES MADE SIMPLE

63 }

The following points should be noted:

• In a CORBA server, several objects are typically accessed by different parts of application
code. Such objects include the ORB, the POA hierarchy and servants for singleton inter-
faces. The above code has declared these as global objects (lines 1–4), and used the prefix
"g " to indicate that they are global variables. In your own applications, you may wish
to replace these global variables with whatever is considered to be a politically correct
alternative.

• Once theCORBA::ORBhas been created (line 15), thePoaHierarchy object is cre-
ated (line 17), passing two parameters to its constructor: the ORB and anenum value that
specifies the server’s deployment model. Thisenum value might be determined based
on, say, a command-line option or an entry in a configuration file. If creation of the
POA hierarchy fails then the constructor ofPoaHierarchy throws acorbautil::
PoaUtilityException . This is caught and printed out by acatch clause (lines 45–
48). Note that the details of creating the POA hierarchy have been encapsulated in the
PoaHierarchy class, so themain() function requires just one line of code to create
the POA hierarchy.

• Having created thePoaHierarchy object, accessor operations are invoked on it to ac-
cess a POA (line 24) or POA Managers (lines–37 38). Notice that these accessor opera-
tions do not useduplicate() so there is not need for the calling code to callCORBA::
release() on the returned reference.

• During graceful shutdown of the server, thePoaHierarchy object should be deleted
(line 53).

5.2.2 Java Version

The Java version of thePoaHierarchy class is shown below.

1 import org.omg.CORBA. * ;
2 import org.omg.PortableServer. * ;
3 import com.iona.corbautil. * ;
4 class PoaHierarchy
5 {
6 public PoaHierarchy(ORB orb, int deployModel)
7 throws PoaUtilityException
8 {
9 PoaUtility util = PoaUtility.init(orb, deployModel);

10 m_core_functionality = util. createPoaManager (
11 "core_functionality");
12 m_admin_functionality = util. createPoaManager (
13 "admin_functionality");

5.2. BUILDING A POA HIERARCHY 39

14
15 m_FooFactory = util. createPoa ("FooFactory",
16 util. root() ,
17 m_core_functionality,
18 "user_id + persistent +"
19 + "use_active_object_map_only");
20
21 m_Foo = util. createPoa ("Foo", m_FooFactory,
22 m_core_functionality,
23 "system_id + transient +"
24 + "unique_id + retain +"
25 + "use_active_object_map_only");
26
27 m_Administration = util. createPoa ("Administration",
28 util. root() ,
29 m_admin_functionality,
30 "single_thread_model +"
31 + "persistent + user_id +"
32 + "use_active_object_map_only");
33 }
34
35 //--------
36 // Accessors
37 //--------
38 public POA FooFactory() { return m_FooFactory; }
39 public POA Foo() { return m_Foo; }
40 public POA Administration() { return m_Administration; }
41 public POAManager core_functionality()
42 { return m_core_functionality. mgr() ; }
43 public POAManager admin_functionality()
44 { return m_admin_functionality. mgr() ; }
45
46 //--------
47 // Instance variables
48 //--------
49 private LabelledPOAManager m_core_functionality;
50 private LabelledPOAManager m_admin_functionality;
51 private POA m_FooFactory;
52 private POA m_Foo;
53 private POA m_Administration;
54 }

The following points should be noted:

• The PoaUtility class isabstract . Its staticinit() operation (line 9) uses Java
reflection APIs to create an instance of a concrete sub-class that is suitable for use with a
specific CORBA product. Further details of this are provided in Section5.5.2.

40 CHAPTER 5. CREATION OF POA HIERARCHIES MADE SIMPLE

• Because of theabstract nature ofPoaUtility , the PoaHierarchy class does
not inherit fromPoaUtility . Instead,PoaHierarchy declares a variable of type
PoaUtility (line 9) and initializes it by callingPoaUtility.init() . There are
two parameters toinit() : a reference to an ORB and anint that specifies the server’s
deployment model. The issue of server deployment models will be discussed in Sec-
tion 5.3.

• The operations and constructor of thePoaUtility class throw an exception of type
PoaUtilityException , which contains a descriptive message. Because of this, the
constructor of thePoaHierarchy class also listsPoaUtilityException in its
throws clause (line 7).

• The created POAs and POA Managers are stored in instance variables (lines 49–53). The
variable for a POA Manager is of typeLabelledPOAManager , which has two public
operations:

public String label();
public POAManager mgr();

• The PoaHierarchy class defines accessor functions (lines 38–44) that provide read-
only access to the corresponding instance variables.

• A POA manager is created by calling thecreatePoaManager() operation (lines 10–
13), and passing a parameter that specifies a uniquelabel (name) by which the POA man-
ager will be known to the internals of thePoaUtility class.

• A POA is created by calling thecreatePoa() operation (lines 15–32). This operation
takes four parameters. The first parameter is the name of the POA to be created. The
second parameter is a reference to its parent POA. The operationroot() can be used to
specify the root POA (lines 16 and 28). The third parameter is a labelled POA manager that
has been previously obtained by callingcreatePoaManager() . The final parameter
is a string of the form"policy + policy + ..." .2

• This string represents a list of policy values that should be applied when creating the POA.
The names of the policy values are lowercase equivalents of theenum values used by
the raw POA APIs, without the module prefix. For example, thePortableServer::
PERSISTENTpolicy value is represented by"persistent" . The use of lowercase
makes it easier for programmers because most code is written in lowercase.

• The PoaUtility class has aroot() operation that can be called to specify the root
POA as a parent of a POA being created withcreatePoa() . However, the root POA

2 The policy values string can use any combination of whitespace, plus signs or commas as separators between
policy names. Also, leading or trailing separators are ignored. This flexibility was chosen in order to facilitate
developers who wish to use policy value strings that, say, are obtained from a runtime configuration file or have
been generated by a code-generation tool.

5.2. BUILDING A POA HIERARCHY 41

shouldnot be used for storing servants. This is because a feature ofPoaUtility is its
ability to allow POAs or POA Managers to optionally listen on fixed port numbers (this
is discussed in Section5.3) and, unfortunately, thePoaUtility class cannot always
configure the port number on which the root POA listens.

5.2.2.1 Using the POA Hierarchy in a Server Application

The code below illustrates the mainline of a server that uses thePoaHierarchy class. Com-
ments follow after the code.

1 import org.omg.CORBA. * ;
2 import org.omg.PortableServer. * ;
3
4 public class Server
5 {
6 public static ORB orb;
7 public static PoaHierarchy poaH;
8 public static FooFactoryImpl fooFactorySv;
9 public static AdministrationImpl administrationSv;

10
11 public static void main(String args[])
12 {
13 try {
14 //--------
15 // Initialize the ORB and create the POA Hierarchy
16 //--------
17 orb = ORB.init(args, null);
18 int deployModel = ...;
19 poaH = new PoaHierarchy(orb, deployModel);
20
21 //--------
22 // Create and activate singleton servants
23 //--------
24 fooFactorySv = new FooFactoryImpl();
25 poaH.FooFactory() .activate_object_with_id(
26 "FooFactory".getBytes(), fooFactorySv);
27 ... // similar code for the Administration singleton
28
29 //--------
30 // Export singleton object references
31 //--------
32 ...
33
34 //--------
35 // Activate POA Managers and go into the event loop
36 //--------

42 CHAPTER 5. CREATION OF POA HIERARCHIES MADE SIMPLE

37 poaH.core_functionality() .activate();
38 poaH.admin_functionality() .activate();
39 orb.run();
40
41 } catch (PoaUtilityException ex) {
42 System.out.println(ex.getMessage());
43 } catch (Exception ex) {
44 System.out.println(ex.toString());
45 }
46
47 //--------
48 // Tidy up and terminate
49 //--------
50 if (orb != null) {
51 try {
52 orb.destroy();
53 } catch (Exception e) {
54 }
55 }
56 }
57 }

The following points should be noted:

• Once theCORBA::ORBhas been created (line 17), thePoaHierarchy object is cre-
ated, passing two parameters to its constructor: the ORB and anint value that species
the server’s deployment model (line 19). This deployment model value might be de-
termined based on, say, a command-line option or an entry in a configuration file. If
creation of the POA hierarchy fails then the constructor ofPoaHierarchy throws a
PoaUtilityException exception. This is caught and printed out by a catch clause
(lines 41–42). Note that all the details of creating the POA hierarchy have been encapsu-
lated in thePoaHierarchy class, so just one line of code (to create thePoaHierarchy
object) is all that is required in themain() function.

• Having created thePoaHierarchy object, accessor operations are invoked on it to ac-
cess a POA (line 25) or POA Managers (lines 37–38).

5.3 Server Deployment Models

The CORBA specification describes animplementation repository. This term is not very in-
tuitive so it deserves an explanation.Implementationis the CORBA terminology for “server
application”, andrepositorymeans a persistent storage area, such as a database. Thus,imple-
mentation repository(commonly abbreviated to IMR) is a database that stores information about
CORBA server applications. Most of the functionality of an IMR must be implemented in a
platform-specific manner. For this reason, the CORBA specification just specifies the high-level

5.3. SERVER DEPLOYMENT MODELS 43

functionality that an IMR must provide, and doesnot specify any of the “look and feel” of an
IMR. This means that IMRs differ widely between different CORBA products. For example, the
Orbacus IMR is an executable calledimr , while the Orbix IMR is an pair of executables: one is
calleditlocator (the locator daemon) and this is supported byitnode daemon (the node
daemon).

When a server application is registered with an IMR then the IMR can (re-)launch the server.
When a server is deployed in this manner, any persistent object references that are exported by
the server donot contain the server’s host and port, but rather they contain the host and port
of the server’s IMR. When a client tries to invoke upon such an object, the client sends its first
invocation to the IMR’s host and port. This gives the IMR a chance to (re-)launch the server if it
is not currently running and then redirect the client to the server’s actual host and port.

The main benefit of using an IMR to launch a server is that the server can be re-launched
automatically if it ever dies. Some IMRs offer additional benefits. For example, the Orbix IMR
can launch severalreplicasof a server, in order to provide load balancing and fault tolerance.
The benefits of having an IMR are desirable in many circumstances. However, there are some
reasons why some people prefer tonot deploy a server through an IMR:

1. Many people learn CORBA once piece at a time. Because of this, it is common for a person
to know how to develop a CORBA server and how to run it from the command-line, but
not (yet) be familiar with how to deploy a server through the IMR.

2. In many CORBA products the IMR is a single point of failure. Some organizations cannot
risk deploying mission-critical applications that have single points of failure. Such orga-
nizations often prefer to deploy CORBA systems without using an IMR. An alternative is
to develop applications using a CORBA product (such as Orbix) that provides areplicated
IMR so that the single point of failure is removed.

3. Some organizations use a variety of different CORBA products. For example, perhaps one
internal project is built using one CORBA product, while another internal project (perhaps
in a different department) is built using a second brand name of CORBA product. Finally,
the organization may have bought a pre-built CORBA server from a third-party company,
and this server was built using a third brand of CORBA product. The system administrator
in such an organization is faced with learning how to perform administration tasks with
the IMRs of each of the three CORBA products. However, this learning curve could be
reduced if some (or all) of the servers could be deployedwithoutan IMR. In this case, the
trade-off is to sacrifice the benefits offered by of IMR in order to simplify administration.

An orthogonal issue for server deployment is whether the server will listen on a fixed port or
on an arbitrary port that is chosen by the operating system. Such arbitrary ports are often called
random, transient(meaning temporary) orephemeral(meaning short-lived) ports. Use of a fixed
port is often desirable if the server is to be accessed by clients across a firewall, or if the server
containsPERSISTENTPOAs and is being deployedwithoutan IMR. However, most CORBA
products will, by default, have servers listens on random ports; this is acceptable if the server
contains onlyTRANSIENTPOAs, or if the server containsPERSISTENTPOAs but is deployed
through an IMR.

44 CHAPTER 5. CREATION OF POA HIERARCHIES MADE SIMPLE

Unfortunately, CORBA doesnot specify the practical details of how to choose:

• Whether or not a server is deployed through an IMR.

• Whether or not a server listens on a fixed or random port.

Instead, such details are left to proprietary extensions provided by each CORBA product. In
some CORBA products, these proprietary extensions take the form of command-line options
or entries in a configuration file. In other CORBA products, the proprietary extensions take
the form of additional APIs, the use of which must be hard-coded into the source code of a
server application. This is unfortunate because it hinders source-code portability of CORBA
applications. However, the proprietary APIs are typically called when creating either POAs or
POA Managers. This makes it possible for thePoaUtility class to encapsulate the use of
such proprietary APIs, and so increase source-code portability of server applications, while at
the same time deferring deployment decisions until deployment time rather than prematurely
deciding them during development.

5.3.1 Specifying a Server Deployment Model withPoaUtility

The constructor ofPoaUtility takes a parameter calleddeployModel that is used to spec-
ify how the server is being deployed. The C++ definition of this parameter’s legal values are
shown below:

namespace corbautil {
class PoaUtility {
public:

enum DeploymentModel {
RANDOMPORTSNOIMR, RANDOMPORTSWITH IMR,
FIXED PORTSNOIMR, FIXED PORTSWITH IMR

};
static DeploymentModel

stringToDeploymentModel (const char * model)
throw(PoaUtilityException);

...
};

};

Java does not have anenum type so the Java deployment models are denoted as integer
constants, as shown below:

package com.iona.corbautil;
abstract public class PoaUtility {

public static final int RANDOMPORTSNOIMR = 0;
public static final int RANDOMPORTSWITH IMR = 1;
public static final int FIXED PORTSNOIMR = 2;
public static final int FIXED PORTSWITH IMR = 3;
public static int stringToDeploymentModel (String model)

5.3. SERVER DEPLOYMENT MODELS 45

throws PoaUtilityException
...

};

The four values simply indicate whether or not a server listens on random ports, and whether
or not the server is deployed through the IMR. If a CORBA product requires use of proprietary
APIs for any of these deployment options then thePoaUtility class calls the appropriate
APIs. If a CORBA product does not require use of any proprietary APIs then thePoaUtility
class simply ignores thedeployModel parameter. In either case, the end user will still have to
use the CORBA vendor’s proprietary administration commands, command-line options and/or
configuration file entries to set up the necessary environmental support for the chosen deploy-
ment model.

ThePoaUtility class provides astringToDeploymentModel() utility method that
converts a deployment model string, such as"RANDOMPORTSNOIMR" to the corresponding
enum/int value. This utility method performs a case-insensitive string comparison, which
means that lower-case strings, such as"random ports no imr" are also acceptable. If an
invalid deployment model string (for example,"foo") is passed as a parameter then the method
throws aPoaUtilityException that contains a message of the form:

Invalid DeploymentModel "foo"

Use of this utility method makes it trivial for server applications to obtain a deployment model
from, say, a command-line option or an entry in a runtime configuration file. This then means that
a server’s deployment model can be decided at deployment time rather than being hard-coded
during development.

5.3.2 Orbix Server Deployment

If deploying an Orbix server through the IMR then theitadmin utility must be used to reg-
ister the server with the IMR. Also, whenever starting an IMR-deployable server (either from
the command-line or through the IMR) then you must be consistent in specifying the same
-ORBname <name>command-line arguments to the server.

If deploying an Orbix server so that it listens on fixed ports then you must indicate the port
number used by a POA manager through a configuration variable of the form:3

<label>:iiop:addr_list

where<label> is the label parameter passed tocreatePoaManager() . Some examples
are shown below:

core_functionality:iiop:addr_list = ["<host>:6000"];
admin_functionality:iiop:addr_list = ["<host>:6001"];

3 Orbix allows individual POAs controlled by the same POA Manager to use different ports; but it also allows
POAs controlled by the same POA Manager to share the same port. ThePoaUtility class keeps administration
simple by allowing the choice of port numbers to be chosen at the relatively coarse granularity of POA Managers
rather than at the finer granularity of individual POAs.

46 CHAPTER 5. CREATION OF POA HIERARCHIES MADE SIMPLE

The"<host>" string should be replaced with the name of the computer on which the server is
running.

5.3.3 Orbacus Server Deployment

If deploying an Orbacus server through the IMR then theimradmin utility must be used to
register the server with the IMR. Also, if you start an IMR-deployable server from the command-
line then you must specify-ORBServerId <name> as command-line arguments to the server.

If deploying an Orbacus server so that it listens on fixed ports then you must indicate the port
number used by a POA manager through a configuration variable of the form:

ooc.orb.poamanager.<label>.endpoint

where<label> is the label parameter passed tocreatePoaManager() . Some examples
are shown below:

ooc.orb.poamanager.core_functionality.endpoint=iiop --port 6000
ooc.orb.poamanager.admin_functionality.endpoint=iiop --port 6001

5.3.4 TAO Server Deployment

If deploying a TAO server through the IMR then thetao imr utility must be used to register
the server with the IMR. Also, whenever starting an IMR-deployable server (either from the
command-line or through the IMR) then you should specify-ORBUseIMR 1 as command-line
arguments to the server.

If deploying a TAO server so that it listens on fixed ports then you must indicate the port num-
ber used by the server by specifying-ORBEndPoint <endpoint-details> as command-
line arguments to the server. An example is shown below:

my_server.exe -ORBEndPoint iiop://foo.acme.com:9999

5.3.5 omniORB Server Deployment

OmniORB does not provide an IMR. Instead, all servers must be started manually. By de-
fault, an omniORB server listens on a random port. If you want an omniORB server to lis-
ten on a fixed port then you can indicate the port number by specifying-ORBendPoint
<endpoint-details> as command-line arguments to the server. An example is shown
below:

my_server.exe -ORBendPoint giop:tcp:foo.acme.com:5000

Alternatively, the omniORB configuration file could contain an entry like that shown below:

endPoint = giop:tcp:foo.acme.com:5000

5.4. USING ORBIX-PROPRIETARY POLICIES 47

5.4 Using Orbix-proprietary Policies

The PoaUtility class provides access to the Orbix-proprietary policies. For example, you
can specify one of the proprietaryOBJECT_DEACTIVATION_POLICYvalues ("deliver" ,
"discard" or "hold") in the list of policies passed as a parameter tocreatePoa() .

Orbix also provides proprietary APIs for creatingwork queues,4 which can then be associated
with POAs. ThePoaUtility class provides APIs to access this functionality. C++ code
that illustrates this is presented in Section5.4.1, and corresponding Java code is presented in
Section5.4.2.

5.4.1 C++ Version

The class declaration below shows how to make use of the Orbix-proprietary work queue mech-
anism.

1 #include "PoaUtility.h"
2 using namespace corbautil;
3 class PoaHierarchy : public PoaUtility
4 {
5 public:
6 PoaHierarchy(CORBA::ORB_ptr orb,
7 PoaUtility::DeploymentModel deployModel)
8 throw(PoaUtilityException)
9 //--------

10 // Accessors
11 //--------
12 WorkQueue_ptr manual_wq() { return m_manual.wq(); }
13 ... // other accessors
14
15 private:
16 //--------
17 // Instance variables
18 //--------
19 LabelledOrbixWorkQueue m_auto;
20 LabelledOrbixWorkQueue m_manual;
21 ... // other instance variables
22 };

The following points should be noted:

• The created work queues are stored in instance variables (lines 19–20). The variable for a
work queue is of typecorbautil::LabelledOrbixWorkQueue , which is a class
that has two public operations:

4 The discussion in this section assumes the reader is already familiar with the concepts of work queues. If you
are not familiar with work queues then you can find details in the OrbixProgrammer’s GuideandProgrammer’s
Reference Guide.

48 CHAPTER 5. CREATION OF POA HIERARCHIES MADE SIMPLE

const char * label();
IT_WorkQueue::WorkQueue_ptr wq();

• An accessor for a work queue can be defined as shown in line 12.

The work queues are created and associated with POAs in the body of the constructor, as
shown below:

1 #include "PoaHierarchy.h"
2
3 PoaHierarchy::PoaHierarchy(CORBA::ORB_ptr orb
4 PoaUtility::DeploymentModel deployModel)
5 throw(PoaUtilityException)
6 : PoaUtility(orb, deployModel)
7 {
8 //--------
9 // Create the POA Managers

10 //--------
11 ...
12
13 //--------
14 // Create the work queues
15 //--------
16 m_auto = createAutoWorkQueue ("auto",
17 1000, 10, 10, 10, 128);
18 m_manual = createManualWorkQueue ("manual", 1000);
19
20 //--------
21 // Create the FooFactory POA
22 //--------
23 m_FooFactory = createPoa ("FooFactory",
24 root() , m_core_functionality,
25 "user_id + persistent + use_active_object_map_only",
26 m_auto);
27 ...
28 }

The following points should be noted:

• An automatic work queue is created though thecreateAutoWorkQueue() operation
(lines 16–17). The first parameter is alabel for the work queue. The remaining parameters
to this operation aremax_size , initial_thread_count , high_water_mark ,
low_water_mark and thread_stack_size_kb . Most of these parameters have
meanings identical to those ofcreate work queue with thread stack size()
in the IT WorkQueue::AutomaticWorkQueueFactory interface. The only ex-
ception isthread_stack_size_kb , which specifies a stack size in kilobytes (the cor-
responding parameter tocreate work queue with thread stack size() ex-
presses the stack size in bytes rather than kilobytes).

5.4. USING ORBIX-PROPRIETARY POLICIES 49

• A manual work queue is created through thecreateManualWorkQueue() operation
(line 18). The parameters to this operation are alabel for the work queue andmax size .

• The createPoa() operation is overloaded so it can take an extra parameter to denote
a work queue that should be associated with the POA (line 26). If you wish, you can
associate the same work queue with several POAs.

5.4.2 Java Version

The class declaration below shows how to make use of the Orbix-proprietary work queue mech-
anism.

1 import org.omg.CORBA. * ;
2 import org.omg.PortableServer. * ;
3 import com.iona.corba.IT_WorkQueue. * ;
4 import com.iona.corbautil. * ;
5 class PoaHierarchy
6 {
7 public PoaHierarchy(ORB orb, int deployModel)
8 throws PoaUtilityException
9 {

10 PoaUtilityOrbixImpl util = (PoaUtilityOrbixImpl)
11 PoaUtility.init(orb, deployModel);
12
13 //--------
14 // Create the POA Managers
15 //--------
16 ...
17
18 //--------
19 // Create the work queues
20 //--------
21 m_auto_wq = util. createAutoWorkQueue ("auto",
22 1000, 10, 10, 10);
23 m_manual_wq = util. createManualWorkQueue ("manual", 1000);
24
25 //--------
26 // Create the "FooFactory" POA
27 //--------
28 m_FooFactory = util. createPoa ("FooFactory",
29 util. root() ,
30 m_core_functionality,
31 "user_id + transient + "
32 + "use_active_object_map_only",
33 m_auto_wq);
34 ...

50 CHAPTER 5. CREATION OF POA HIERARCHIES MADE SIMPLE

35 }
36
37 //--------
38 // Accessors
39 //--------
40 public WorkQueue manual_wq() { return m_manual_wq.wq(); }
41 ...
42
43 //--------
44 // Instance variables
45 //--------
46 private LabelledOrbixWorkQueue m_auto_wq;
47 private LabelledOrbixWorkQueue m_manual_wq;
48 ...
49 }

The following points should be noted:

• To access the Orbix-proprietary functionality, you must typecast the value returned from
PoaUtility.init(orb) to typePoaUtilityOrbixImpl (lines 10–11).

The created work queues are stored in instance variables (lines 46–47). The variable for a
work queue is of typeLabelledOrbixWorkQueue , which has two public operations:

public String label();
public WorkQueue wq();

• An accessor for a work queue can be defined as shown in line 40.

• You create an automatic work queue by callingcreateAutoWorkQueue() (lines 21–
22). The first parameter to this operation is alabel for the work queue. The remain-
ing parameters aremax_size , initial_thread_count , high_water_mark and
low_water_mark . These parameters are similar to those ofcreate work queue()
in IT WorkQueue::AutomaticWorkQueueFactory .

• A manual work queue is created through thecreate manual work queue() oper-
ation (line 23). The parameters to this operation are alabel for the work queue and
max size .

• The createPoa() operation is overloaded so it can take an extra parameter to denote
a work queue that should be associated with the POA (line 33). If you wish, you can
associate the same work queue with several POAs.

5.4.3 Configuration Values for Work Queues

If the labelparameter passed to a work queue creation operation is an empty string then the other
parameter values are used directly when creating the work queue. However, if thelabelparame-
ter is not an empty string then the other parameters can be overridden by runtime configuration

5.5. PORTING TO OTHER CORBA PRODUCTS 51

entries. If a class has an automatic work queue called"auto" and a manual work queue called
"manual") then the corresponding runtime configuration entries can be expressed as shown
below:

auto :max_size = "1000";
auto :initial_thread_count = "10";
auto :high_water_mark = "10";
auto :low_water_mark = "10";
auto :thread_stack_size_kb = "512";
manual :max_size = "1000";

5.5 Porting to Other CORBA Products

5.5.1 C++ Version

The IDL-to-C++ mapping has one annoying hindrance to portability: it does not define the names
of CORBA-related header files. The practical effect of this is that a developer must change
#include directives for CORBA-related header files when porting an application to a different
CORBA product. To alleviate this problem, the author has developed a collection of simple
“wrapper” header files that (depending on which#define symbol as been defined)#include
product-specific header files. This collection of wrapper header files, which currently supports
Orbix, Orbacus, TAO and omniORB, is documented in Chapter4 (Portability of C++ CORBA
Applications). ThePoaUtility class uses the portability header files so that it can#include
CORBA header files in a portable way.

If you wish to port thePoaUtility class to another CORBA vendor’s product then the first
step is to enhance the portability wrapper header files to support that CORBA vendor’s product.
In practice, this should take only a few minutes of time. Having done that, thePoaUtility
class should then compile cleanly with the other CORBA vendors’ product. However, it will not
(yet) take advantage of the CORBA vendor’s proprietary APIs for, say, getting a POA Manager
to listen on a fixed port number. To add this capability, you will need to examine the code in
PoaUtility.cxx and add some#if...#endif directives as required.

The history of software development has shown thatexcessiveuse of#if...#endif di-
rectives can result in software that is difficult to read and maintain [SC]. Currently, use of
#if...#endif directives is quite localized within thePoaUtility class. However, if this
class is extended to support many other CORBA products in the future then proliferation of
#if...#endif directives might prove troublesome for code readability and maintainability.

5.5.2 Java Version

The Java approach to producing product-specific implementations of an API is to define the API
as either aninterface or anabstract class and then use Java’s reflection APIs to dy-
namically load an appropriate implementation. The canonical example of this for CORBA pro-
grammers isorg.omg.CORBA.ORB , which is anabstract class . The staticinit()

52 CHAPTER 5. CREATION OF POA HIERARCHIES MADE SIMPLE

operation on this class uses reflection to create an instance of the subclass specified by the
org.omg.CORBA.ORBClass system property.

ThePoaUtility class uses a similar approach. It has a static operation calledinit() .
This operation uses reflection to create an instance of a class using the following algorithm:

1. If the com.iona.corbautil.PoaUtilityClass system property exists then its
value specifies the name of the class to be instantiated.

2. Otherwise, theorg.omg.CORBA.ORBClass system property is examined.

(a) If this property has the value"com.iona.corba.art.artImpl.ORBImpl"
then an instance ofcom.iona.corbautil.PoaUtilityOrbixImpl is cre-
ated. As its name suggests, this class is an implementation for use with Orbix. In-
ternally, it uses Orbix-proprietary APIs that allow POAs to listen on fixed ports. It
also defines additional operations (discussed in Section5.4) that provide access to
the Orbix-proprietary work queues.

(b) If this system property has the value"com.ooc.CORBA.ORB" then an instance of
com.iona.corbautil.PoaUtilityOrbacusImpl is created. As its name
suggests, this class is an implementation for use with Orbacus. Internally, it uses
Orbacus-proprietary APIs that allows a POA manager to listen on a fixed port.

3. Otherwise, an instance ofcom.iona.corbautil.PoaUtilityPortableImpl is
created. This class uses only CORBA-compliant APIs so it is portable to other CORBA
vendor products, but it does not have the ability to allow a POA manager to listen on a
fixed port.

The above algorithm could be simplified to just steps 1 and 3. However, step 2 provides a
better out-of-the-box experience for Orbix and Orbacus developers because the developers do
not need to set up a system property in order for a server to have the ability to listen on a fixed
port.

If you want to produce a version ofPoaUtility that can take advantage of the proprietary
APIs of another CORBA product then you should write a class that inherits fromcom.iona.
corbautil.PoaUtilityPortableImpl and redefines whatever operations it needs to
and/or adds new operations.

Chapter 6

Orbix Administration Made Simple

Orbix administration is performed through sub-commands of theitadmin utility. Each sub-
command performs a small amount of work so you typically need to execute severalitadmin
commands to complete a useful unit of work, such as registering an Orbix server with the Im-
plementation Repository (IMR) or updating configuration variables. However,itadmin has
a built-in scripting language. This makes it possible to write a script that performs the entire
sequence ofitadmin commands required to carry out a task. This chapter discusses several
useful task-baseditadmin scripts:

orbix srv admin can be used to perform several of the most commonly required adminis-
tration tasks associated with Orbix servers, such as registering an Orbix server with the
IMR and initializing or updating configuration values for the server.

orbix set config vars can initialize and update configuration values for an application
but it does not attempt to interact with the IMR. As such, this script contains a subset of the
functionality oforbix srv admin . This script is typically used with client applications
or servers that are being deployed without an IMR.

orbix notify service registers a Notification Service with Orbix. When Orbix is initially
configured with theitconfigure utility, you can choose to createone Notification
Service. However, some organizations like to haveadditionalinstances of the Notification
Service to increase throughput. This utility makes it easy to do this.

orbix ns on fixed port reconfigures the Naming Service so that it can listen on a fixed
port.

6.1 Introduction

Many CORBA servers are deployed through an Implementation Repository (IMR).1 Some ad-
ministration tasks are commonly performed on such Orbix server applications. For example:

1 Orbix uses the terminologylocation domaininstead ofImplementation Repository.An overview of the
IMR/location domain is provided in Section6.2.

53

54 CHAPTER 6. ORBIX ADMINISTRATION MADE SIMPLE

• When a server is first compiled (or a pre-compiled application is installed), it should be
registeredwith the IMR before it is run.

• You may wish to set (and later modify) some configuration variables for the server. For
example, you can change the size of a thread pool by setting configuration variables. Like-
wise, you can enable active connection management for the server by setting configuration
variables.

• Over time, the load on the server may increase to the point where a single server cannot
handle the high load. Because of this, you may decide to re-register the application as a
replicatedserver.

• Finally, you may wish tounregisterthe application if you are taking it out of deployment.

Although many CORBA servers are deployed through an IMR, some are deployed without
an IMR and, of course, client applications are also deployed without an IMR. There is still some
administration that is associated with such IMR-less applications. In particular, you may wish to
set configuration variables for such applications.

All Orbix administration tasks are performed with various sub-commands of theitadmin
utility. However, each individual sub-command ofitadmin performs just a small amount of
work. Because of this, you typically need to executeseveralitadmin commands to complete
a useful unit of work, such as registering an Orbix server. However,itadmin has a built-
in scripting language. This built-in scripting language makes it feasible to write a script that
performs the entire sequence ofitadmin commands required to carry out a task.

This chapter discusses severalitadmin scripts. One, calledorbix srv admin , performs
common IMR-related administration tasks associated with servers and also initializes/updates
configuration variables for a server. Another script, calledorbix set config vars , initial-
izes or updates configuration values for an application but it does not attempt to interact with
the IMR. As such, this script contains a subset of the functionality of theorbix srv admin .
This script is typically used with client applications or servers that are being deployed with-
out an IMR. Theorbix notify service script makes it easy to registerseveralNotifica-
tion Services with the IMR. The final script,orbix ns on fixed port , automates the steps
required to reconfigure the Naming Service so that it listens on a fixed port (which makes it
firewall-friendly).

These scripts can be used to perform several of the most commonly required administra-
tion tasks associated with Orbix applications. This has the immediate benefit of simplifying
administration of Orbix applications. An additional benefit is that these scripts can echo out
the itadmin command that they execute. This allows users to see the sequence ofitadmin
commands required for various tasks. Because of this, these scripts can be used as self-teaching
tools to help people more quickly master the enormous power and flexibility ofitadmin .

6.2 What is an Implementation Repository (IMR)

The CORBA specification mentions the concept of animplementation repository(IMR), but does
not discuss it in much detail because much of the functionality of an IMR is platform-dependent,

6.2. WHAT IS AN IMPLEMENTATION REPOSITORY (IMR) 55

whereas the CORBA specification focuses on platform-independent concepts.
This section explains the central concepts of an IMR. We start by explaining the CORBA

concept of an IMR. We then provide a high level overview of the Orbix implementation of an
IMR and finally outline the details of what Orbix stores in its IMR database.

6.2.1 The CORBA Concept of an Implementation Repository

The CORBA specification describes animplementation repository. This term is not very intuitive
so it deserves an explanation.Implementationis the CORBA terminology for “server applica-
tion”, andrepositorymeans a persistent storage area, such as a database. Thus,implementation
repository(commonly abbreviated to IMR) is a database that stores information about CORBA
server applications.

The CORBA specification contains only apartial definition of an IMR. In particular, the
specification states the high-level functionality that an IMR should provide, but the specification
doesnotstate how this functionality should be implemented. Neither does the specification state
how the IMR should be administered. The need for a partial specification is because much of the
functionality of an IMR must be implemented and administered in a platform-specific manner.
For example:

• An IMR should be capable of starting and stopping a server process. Different operating
systems have different ways of starting and stopping processes.

• An IMR should record details of servers, such as the command used to launch a server, and
whether or not the server is currently running. Some IMRs may store this information in a
database. Other IMRs might record this information in a textual file. An IMR running on
an embedded device might not have access to a file system or a database and hence might
record server details in, say, non-volatile RAM.

In essence, an IMR running on a mainframe would not only beimplementeddifferently to an
IMR running on a PC or on an embedded device, but it would also beadministereddifferently
too. Put simply, one CORBA vendor’s IMR running on one kind of computer might have a
very different “look and feel” to another CORBA vendor’s IMR running on a different kind of
computer. This wide variation in IMRs is the reason why the CORBA specification contains only
a high-level discussion about IMRs.

6.2.2 The Orbix Implementation Repository

The Orbix IMR is implemented with the following components:

1. A database is used to record information about server applications.

2. A locator daemon(itlocator 2) provides a CORBA server wrapper around the IMR
database.

2 Many executables supplied with Orbix start with the prefix"it" . This prefix is an acronym forIONA Tech-
nologies, and is used to prevent namespace pollution of executables installed on a computer.

56 CHAPTER 6. ORBIX ADMINISTRATION MADE SIMPLE

3. The itadmin utility is a command-line-driven CORBA client that communicates with
the locator daemon in order to query and update the IMR database.

4. Whenever the locator daemon wants to start or stop a server process, it delegates the start-
ing/stopping task to anode daemon(itnode daemon). The node daemon also “pings”
servers periodically to check if they are still alive. There should be a node daemon run-
ning on every machine on which the IMR may want to launch a server application. When
a server application is registered with the IMR, one piece of the registration information
specifies the node daemon (host) that should be used for running the server.

Placing some functionality of an IMR in the locator daemon and other functionality in the
node daemons is a technique that is used by several CORBA vendors (although other CORBA
vendors will use terminology other thanlocator daemonandnode daemon). This separation of
functionality offers one important benefit for a CORBA vendor and a different important benefit
for their customers:

• The important benefit for the CORBA vendor is that the much of the platform-specific
code in an IMR is concerned with starting and stopping server processes. This platform-
specific code can be encapsulated in the node daemon, which enhances maintainability of
the source code of the IMR.

• The important benefit for the customers is that the registration details forall server appli-
cations are stored in one centralized location (in the IMR database accessed via the locator
daemon),irrespectiveof how many node daemons (hosts) there are in the IMR. This allows
for easy centralized administration of a CORBA system.

You create an IMR by running theitconfigure utility. Full details of this are given in
the OrbixAdministrator’s Guide. You should note that “Implementation Repository” (IMR) is
CORBA terminology. It is common for CORBA vendors to use a different name for their own
IMR. For example, the Orbix name for an IMR is alocation domain. A location domain is
simply the contents of the IMR database (that is, the details for all registered server applications)
plus the locator daemon and its supporting node daemon(s).

Orbix does not place any restriction on how many or how few IMRs you can create and
whether different IMRs run on thesameor differentcomputers. Rather, the choice on the number
of IMRs installed in an organization is typically due to pragmatic considerations. For example,
it is common for each developer to have his/her own “private” IMR for day-to-day development
work. Another IMR might be used for system testing and yet another IMR might be used for
deployed applications. An organization might find it convenient to haveseveral“deployment”
IMRs: perhaps a separate one for each branch or department in the organization, or perhaps one
IMR for, say, payroll applications and another IMR for stock-control applications.

6.2.3 What is Stored in the Implementation Repository?

When you register an Orbix-based server application with an IMR, you have to register three
different kinds of entities: aprocess, anorbnameand thePOAsin the server’s POA hierarchy.

6.2. WHAT IS AN IMPLEMENTATION REPOSITORY (IMR) 57

The termprocessmeans the set of details required for launching a server application. This
includes:

• The full path to the server executable.

• Command-line arguments to be passed to the server application.

• The current working directory. If this information is not specified then it defaults to the
root directory.

• Environment variables. If none are specified then the launched server inherits the environ-
ment variables of the node daemon process that started it. If some environment variables
are specified thenonly those specified variables are passed to the launched application,
that is, the launched server willnot inherit anyenvironment variables at all from the node
daemon.

• Startup mode. This can be eitheron demand or disable . The on demand mode
means that the server will be launched whenever a client tries to interact with it. The
disable mode means that the IMR will never attempt to launch the server; instead, the
server must be launched by some other means, such as having a human run it from the
command line.

• The node daemon (host) that is used to launch and monitor the health of the server process.

• On a UNIX machine, you can also specify a username, groupname and umask to be used
when launching the server application.

A process is registered with the IMR through the following command:

itadmin process create [options] <process-name>

Command-line options are used to specify the details of theprocess , such as the executable
name, the command-line arguments, environment variables and so on.

There is an ORB object inside each CORBA-based application, and this ORB can be given a
name through the"-ORBname <orbname>" command-line argument when starting an Orbix
application. In effect, theorbname is the application’s name that identifies the application to
the IMR. Before running an application, you can register itsorbname with the IMR. This serves
the following purposes:

• You can associate theorbname with a process , so that the IMR knows how to re-
launch the application.

• When you later register the POA hierarchy of the server application, you need to associate
each persistent POA with anorbname .

An orbname is registered with the IMR through the following command:

itadmin orbname create [-process <process-name>] <orb-name>

58 CHAPTER 6. ORBIX ADMINISTRATION MADE SIMPLE

When an application is started, the application’sorbname determines what set of configuration
information will be used by the Orbix runtime system. Application-level code can use Orbix-
proprietary APIs to obtain application-level configuration information from the same place, or
alternatively an application can obtain its runtime configuration information from somewhere
else.

A CORBA server application uses a collection of POAs to manage its objects. POAs in an
application are arranged in a hierarchy and each POA is eithertransientor persistent:

• A transient POA isnotassociated with anorbname , and it needs to be registered with the
IMR only if it is the parent (or ancestor) of a persistent POA.

• A persistent POA must be registered with the IMR. A persistent POA is associated with
either oneorbname or a list of orbname s (and a load-balancing strategy). Associating
a POA with alist of orbname s means that the POA is replicated. In Orbix, replication is
provided at the granularity of individual POAs, but you typically replicateall the POAs in
a server so it looks like server replication.

A poa is registered with the IMR through the following command:

itadmin poa create [options] <hierarchical-poa-name>

Command-line options to the command are used to specify the details of thepoa , such as
whether it is transient or persistent, which (list of)orbname (s) it is associated with and, for
a replicated poa, its load-balancing strategy.

When you compile or install a pre-compiled Orbix-based server application, you should reg-
ister its process , orbname and poa hierarchy with an IMR. This registration occurs just
once, because the IMR stores all the details in its database.

The registration details of a server are said to bestatic because they rarely change. The
IMR also recordsdynamic(that is, frequently updated) information such as the host and ports of
servers that are currently running. It uses this information when it needs to redirect a client to an
appropriate server and also so that it can re-launch a server on an as-needed basis.

6.3 Building Task-based Utilities with itadmin

When you register an Orbix-based server application with an IMR (locator daemon), you typi-
cally execute a series ofitadmin commands to:

• Register aprocess .

• Register anorbname and associate it with theprocess .

• Register thepoa hierarchy of the server, and associate eachpoa with theorbname .

• Optionally, set up configuration variables for the server (discussed later).

6.3. BUILDING TASK-BASED UTILITIES WITH ITADMIN 59

It is not uncommon for a user to execute a series of 10 or moreitadmin commands in
order to register a server application. Executing this manyitadmin commands is tedious and
somewhat error-prone. However, the task can be made much simpler by writing a higher-level
utility that encapsulates the lower-levelitadmin commands. Before discussing such utilities,
it is instructive to discusshow the utilities were built, because readers may wish to write their
own utilities using similar techniques.

The following is a list of three ingredients vital to building task-based utilities on top of
itadmin :

1. It is important to know thatitadmin has a built-in interpreter for the Tcl (pronounced
“tickle”) scripting language. Tcl scripts have a".tcl" file extension. If you write a Tcl
script calledfoo.tcl then you can execute it withitadmin as shown below:

itadmin foo.tcl ...

2. Tcl programmers often employ the following useful technique. Tcl has asource com-
mand that is used to read and execute the Tcl commands in another file. This means that
a programmer does not have to write a configuration-file parser for a Tcl-based applica-
tion. Instead, the configuration information can be stored as a collection of Tcl assignment
statements in one file and this file can then besource d into the main Tcl application. The
utilities discussed in this chapter use this technique to read adescriptionfile that (using
Tcl syntax) describes an Orbix server application. Section6.3.1provides a brief overview
of enough Tcl syntax to make people comfortable editing these Tcl-based description files.

3. Once you have written anitadmin script called, say,foo.tcl , peoplecould run the
script as:

itadmin /full/path/to/foo.tcl ...

However, this is somewhat awkward because users need to type the full path to the script
they want to run. Instead, it is a good idea to write a simple Windows batch file (or a UNIX
shell script) wrapper that, internally, executesitadmin with the appropriate command-
line arguments. Once this batch file (or shell script) has been put into abin directory,
users can then run the utility by simply typing"foo ..." .

6.3.1 Overview of Tcl Syntax

Assignments to variables are made with theset command. This is illustrated in the examples
below:

set a "hello, world"
set b hello
set c 42; # this is a comment

60 CHAPTER 6. ORBIX ADMINISTRATION MADE SIMPLE

Commands can be terminated by a newline character or optionally by a semicolon. Com-
ments start with# and continue to the end of the line. If you have a comment on the same line
as another statement then youmustterminate the statement with a semicolon before starting the
comment. If a command is too long to fit on one line then you can use a backslash immediately
followed by a newline character in order to continue the command on the next line.

Tcl treats all values as strings. In the above example, the value42 assigned to variablec
looks like an integer but it really is a string.3 Quotes are needed for the"hello, world"
string because that string contains a space. However, the use of quotes is optional if a string does
not contain any spaces. For example, there are no quotes around the stringshello or 42 in the
above assignment statements.

The value of a variable is obtained by prefixing the variable’s name with$. For example:

set a hello
set b goodbye
set c "$a and $b"

The above example also illustrates that the use of$ works inside quoted strings.
The backslash character is used as an escape character in Tcl. Because of this, you must

use two backslashes if you want to embed a backslash in a string. This is often used to express
Windows filenames, as shown in the example below:

set filename "C:\\temp\\foo.txt"

Actually, Tcl is quite happy using forward slashes in Windows filenames, so the above example
could be written more conveniently as shown below:

set filename "C:/temp/foo.txt"

Tcl uses round brackets to indicate that a variable is an “array”. Tcl’s concept of an array is
more like the concept of alookup tableor map in other programming languages. Theenv()
array is used to access environment variables:

set foo(a) hello
set foo(b) goodbye
set c " $foo(a) and $foo(b)"
set x $env(PATH)

If you want to use the return value of a function call as a parameter to another command then
you surround the function call with square brackets, as shown in the following example:

set x [factorial 5]

Lists (of strings) are enclosed in braces. For example:

3 Tcl automatically converts strings to numbers on an as-needed basis in order to perform arithmetic operations,
so treating all values as strings does not limit Tcl’s power. Once the string-to-integer conversion has been performed,
the integer value is cached so future accesses of the value are faster.

6.4. USINGORBIX SRVADMIN 61

set colors {red green "light blue" }
Using $ to access the value of a variable does not work inside braces. For example, the

following does not work as you might hope:

set color1 "red"
set color2 "green"
set color3 "light blue"
set colors {$color1 $color2 $color3 }
Instead, you can use the list command to build a list:

set color1 "red"
set color2 "green"
set color3 "light blue"
set colors [list $color1 $color2 $color3]

Obviously, there is a lot more to Tcl, such as while-loops, if-then-else statements and proce-
dures. However, the above discussion of Tcl syntax is sufficient for readers to understand how to
edit description files that are used withorbix srv admin andorbix set config vars .

6.4 Usingorbix srv admin

Theorbix srv admin utility is a task-baseditadmin script that makes it easy to perform
common administration tasks associated with Orbix servers. For example,orbix srv admin
can be used to register and unregister Orbix servers. It can also be used to start and stop a
registered server and to update configuration variables for a registered server. You can get a
usage statement by runningorbix srv admin with the-h option. The usage statement looks
like that shown below:

usage: orbix srv admin [options] file.des
options are:

-s Silent mode
-n Do not execute commands. Just show them
-h Print this usage statement
-create Create a starting-point description file
-register Register the application’s details
-unregister Unregister the application’s details
-start Start the server
-stop Stop the server
-set_vars Set or update the server’s configuration variables
-launch_cmd Print the server’s launch command

As can be seen from the usage statement,orbix srv admin takes a.des (description)
file as a command-line argument. This file uses Tcl syntax todescribean Orbix server applica-
tion. You do not need to write such a description file by hand, becauseorbix srv admin can

62 CHAPTER 6. ORBIX ADMINISTRATION MADE SIMPLE

create a starting-point description file for you. Let us assume that you want to perform adminis-
tration tasks on an Orbix-based server that is part of a payroll-processing system. You can create
a starting-point description file calledpayroll.des by running the following command:

orbix_srv_admin -create payroll.des

The first part of the generated description file, shown below, specifies how to launch a server
application.

set orb_name "acme.uk.payroll"
set process_name $orb_name
set root_poa_name $orb_name
set description ""
set startup_mode "on_demand"; # on_demand or disable
#--------
File names on Windows can be expressed as "C:/full/path/to/file"
or as "C: \full \path \to \file"
#--------
set executable "/full/path/to/executable"
set cmd_line_args "x y z"
set working_directory "/full/path/to/current/working/directory"
#--------
If "env_var_list" is set to an empty list " {}" then the launched
application inherits all the environment variables from the node
daemon that launched it. If "env_var_list" is not empty then the
launched application does not inherit any environment variables
from the node daemon, and instead has only the environment
variables listed in "env_var_list".
#--------
set env_var_list [list \

"PATH=$env(PATH)" \
"CLASSPATH=$env(CLASSPATH)" \
"SYSTEMROOT=$env(SYSTEMROOT)" \
"IT_CONFIG_DOMAINS_DIR=$env(IT_CONFIG_DOMAINS_DIR)" \
"IT_DOMAIN_NAME=$env(IT_DOMAIN_NAME)" \
"IT_LICENSE_FILE= $env(IT_LICENSE_FILE)" \

]
#--------
If "node_daemon_list" contains several entries then the server
will be registered as a replicated server and "load_balancer"
specifies the load-balancing policy (random, round_robin or active)
to be used. If "node_daemon_list" contains just one entry then
"load_balancer" is ignored.
#--------
set node_daemon_list {iona_services.node_daemon.pizza }
set load_balancer "random"; # random, round_robin or active
#--------

6.4. USINGORBIX SRVADMIN 63

UNIX-specific. These entries are ignored on Windows
#--------
set group "nobody"
set user "fred"
set umask "755"

As you can see, the description file contains a sequence of Tcl assignment statements (an
overview of Tcl syntax is provided in Section6.3.1). Once you are familiar with the concepts
behind the information stored in the IMR (see Section6.2.3), then most of the variable names
and values are quite intuitive. The comments in the generated file explain most of the subtle
points.

The most important point to note that is not discussed in the comments is that although
process name, orb name androot poa name can have different values, it is typically a
good idea to use the same name for all of them. This is because theprocess name, orb name
androot poa name are closely related concepts; using the same name for each makes it easy
to see their relationship to each other. The name chosen can have embedded periods, such as
"acme.uk.payroll" shown in the above example. It is a good idea to use anorb name
with embedded periods because when the application is launched, Orbix will first search for run-
time configuration information in theacme.uk.payroll configuration scope. If any config-
uration values are missing from this scope then Orbix starts searching in surrounding scopes—in
the acme.uk scope, then theacme scope and finally the global scope—to find runtime con-
figuration values. In essence, variables in outer scopes supplydefaultconfiguration values for
applications, and these values can be selectively overridden by redefining the variables in inner
scopes. This is a very useful feature of Orbix because related applications tend to have sim-
ilar configuration values. Rather than specifying dozens of configuration values for each and
every Orbix application, it is possible to specify the “common” values in an outer scope and then
specifyonly the different values in inner scopes specific to each application.

The next entry in the description file gives details of the POA hierarchy in the server appli-
cation:

#--------
Each line in poa_hierarchy is a pair of the form:
lifespan full/path/to/poa-name
where lifespan can be one of: transient or persistent
#--------
set poa_hierarchy {

persistent FooFactory
persistent FooFactory/Foo
transient FooFactory/Foo/FooIterator
persistent Administration

}

The next entry specifiesruntimeconfiguration variables that should be set in theorb name
configuration scope.

#--------

64 CHAPTER 6. ORBIX ADMINISTRATION MADE SIMPLE

Each line in runtime_config_variables is a triplet of the form:
type name value
The type can be one of: long, bool, list, string or double
list values are comma-separated strings
bool values can be: true or false
#--------
set runtime_config_variables {

string plugins:local_log_stream:filename "server.log"
list event_log:filters " * =WARN+ERR+FATAL"
long thread_pool:high_water_mark "5"
long thread_pool:low_water_mark "5"
long thread_pool:initial_threads "5"
long thread_pool:max_queue_size "500"

}

Section6.9discusses useful runtime configuration variables that you might wish to use in a
deployed application.

If you are registering the server as areplicatedserver (that is, with multiple node daemons)
then you can optionally also specify runtime configuration variables for each replica with Tcl
variables calledruntime_config_variables_replica_<number> . The generated
starting-point description file contains sample details for three replicas:

set runtime_config_variables_replica_1 {
string plugins:local_log_stream:filename "server.replica_1.log"

}
set runtime_config_variables_replica_2 {

string plugins:local_log_stream:filename "server.replica_2.log"
}
set runtime_config_variables_replica_3 {

string plugins:local_log_stream:filename "server.replica_3.log"
}

You should modify the starting-point description file so that it contains details appropriate for
the payroll server application. Once you have done that you can register the payroll server
with the command:

orbix_srv_admin -register payroll.des

When you run that command,orbix srv admin executes all the individual commands
required to register the server.

You can start the registered server with the command:

orbix_srv_admin -start payroll.des

If the server was registered as a replicated server then the above command causesall the replicas
to be started.

You can stop the registered server with the command:

6.5. USINGORBIX SET CONFIGVARS 65

orbix_srv_admin -stop payroll.des

If the server was registered as a replicated server then the above command stopsall the replicas.
If you want to modify the runtime configuration variables for the server then you should

modify theruntime config variables entry in payroll.des and then run the com-
mand:

orbix_srv_admin -set_vars payroll.des

Note that an already-running server will not notice the updated runtime configuration variables.
Instead, you will have to stop and then re-start the server for the new variables to take effect.

The -unregister option of orbix srv admin can be used to unregister the applica-
tion. This is useful if you have already deployed a server and want to make changes to how it
is deployed, for example, you want to change its command-line arguments or turn it from being
an un-replicated server to a replicated one. In such cases, you should unregister the server, then
make appropriate changes topayroll.des and finally re-register the server.

6.5 Usingorbix set config vars

The orbix set config vars utility contains just a small subset of the functionality of
orbix srv admin .

You can get a usage statement by runningorbix set config vars with the-h option.
The usage statement looks like that shown below:

usage: orbix_set_config_vars [options] file.des
options are:

-s Silent mode
-n Do not execute commands. Just show them
-h Print this usage statement
-create Create a starting-point description file

As can be seen from the usage statement,orbix set config vars takes a.des (de-
scription) file as a command-line argument. This file uses Tcl syntax todescribethe configu-
ration variables required for an Orbix application. You do not need to write such a description
file by hand, becauseorbix set config vars can create a starting-point description file
for you.

Let us assume that you want to manipulate configuration variables for Orbix-based client
application that is part of a payroll-processing system. You can create a starting-point description
file calledpayroll client.des by running the following command:

orbix_set_config_vars -create payroll_client.des

The generated description file is shown below.

66 CHAPTER 6. ORBIX ADMINISTRATION MADE SIMPLE

#--------
The orb_name specifies the configuration scope where configuration
variables will be set.
#--------
set orb_name "acme.uk.payroll_client"

#--------
Each line in runtime_config_variables is a triplet of the form:
type name value
The type can be one of: long, bool, list, string or double
list values are comma-separated strings
bool values can be: true or false
#--------
set runtime_config_variables {

string plugins:local_log_stream:filename "server.log"
list event_log:filters " * =WARN+ERR+FATAL"
long thread_pool:high_water_mark "5"
long thread_pool:low_water_mark "5"
long thread_pool:initial_threads "5"
long thread_pool:max_queue_size "500"

}
This file contains just two variables:orb nameandruntime config variables . The

latter specifies the runtime configuration variables that should be set, whileorb name specifies
the configuration scope in which the variables should be set. If these variables look familiar
then that is because description file used byorbix set config vars is a subset of the
description file used byorbix srv admin .

You should modify the starting-point description file so that it contains details appropriate
for thepayroll client application. Then you can rerunorbix set config vars com-
mand (without the-create option) on the description file:

orbix_set_config_vars payroll_client.des

Running the above command causes the Orbix configuration domain to be updated with the
variables specified in the description file.

6.6 Usingorbix notify service

When you run theitconfigure GUI to set up an Orbix environment, you can choose to have
one instance of a Notification Service running. A single Notification Service is adequate for
many organizations. However, some organizations that make heavy use of a Notification Service
may find that a single instance limits scalability, and so may wish to haveseveralinstances of the
Notification Service running, with some consumer and supplier applications configured to use
one Notification Service, other consumer and supplier applications configured to use another No-
tification Service, and so on. Theorbix notify service utility is useful in such situations.
It is based on—and has a very similar “look and feel” to—orbix srv admin (Section6.4).

6.6. USINGORBIX NOTIFY SERVICE 67

All the command-line options of theorbix notify service utility are identical to those
of orbix srv admin (Section6.4), but have a behavior that is tailored to the requirements of
the Notification Service.

You can create a starting-point description file calledfoo.des by running the following
command:

orbix_notify_service -create foo.des

The first part of the generated description file, shown below, contains a few variable setting that
you might wish to change:

set group "nobody"
set user $::tcl_platform(user); # current user
set umask "755"
set unique_name_part "[exec hostname]"
set orb_name "iona_services.notify_$unique_name_part"
set named_key "NotificationService_$unique_name_part"

The following points should be noted:

• Thegroup , user andumask entries are specific to UNIX, and are ignored on Windows.
The expression$::tcl_platform(user) evaluates to the username of the person
running theorbix notify service utility.

• It is important to ensure that there are no name clashes between Notification Services
installed within the same Orbix domain. For this reason, theunique name part entry
must be set to something unique for each Notification Service. This value of this variable
is concatenated with various other entries in the.des file. The default value of this entry
is [exec hostname] , which is the Tcl syntax for denoting the result of executing the
hostname shell command. This is a convenient default if you want to have a separate
instance of the Notification Service installed on different machines.

• By convention, both CORBA services (for example, the Naming Service, Transaction
Service and Notification Services) and Orbix-proprietary services (for example, the Lo-
cation Service, node daemons and configuration repository) haveorbname s within the
iona services scope. The default value for theorb nameentry respects this conven-
tion, but you can change it if you wish.

• Orbix uses the terminologynamed keyto mean aname→ stringified-IORmapping that
is stored in thecorbaloc server functionality of the Orbix IMR. Theitadmin sub-
commands to perform administration of named keys is documented in the OrbixAdminis-
trator’s Guide. Theorbix notify service utility creates a named key mapping for
the Notification Service instance, and thenamed key entry specifies thenamepart of the
name→ stringified-IORmapping.

The remaining entries in the generated.des file should be left alone, as they have been preset
to suitable values for a Notification Service.

68 CHAPTER 6. ORBIX ADMINISTRATION MADE SIMPLE

Once you are happy with the contents of the.des file, you can then register the Notifi-
cation Service by runningorbix notify service with the -register option. Doing
this causes the server to be registered similarly to the way thatorbix srv admin registers a
server, but with the following “added value” steps:

• It runs itnotify (the executable for the Notification Service) with theprepare flag.
This causes the Notification Service to generate a stringified IOR into a file in thevar
sub-directory of your Orbix domain.

• The generated stringified IOR is then registered as anamed key.

If you run orbix notify service with the -unregister option then it unregisters
the Notification Service in a manner similar to howorbix srv admin unregisters a server,
but it also removes the stringified IOR file in thevar sub-directory of your Orbix domain and
deletes thenamed keyentry.

The other command-line options (-start , -stop , -set vars and-launch cmd) work
with orbix notify service in the same way that they work withorbix srv admin .

6.7 Usingorbix ns on fixed port

If you have a Naming Service in an IMR-based Orbix environment thenitconfigure con-
figures the Naming Service so that it listens on a random port each time it is started.4 Having
the Naming Service listen on a random port is acceptable for a great many deployed CORBA
systems. However, the use of a random port can cause communication problems if the Nam-
ing Service is to be accessed through a firewall; this is because firewall routers normally allow
TCP/IP communication only to a collection of specified,fixed ports. There are two possible
approaches to making the Naming Service accessible through a firewall.

One approach is to use the Orbix firewall proxy service that is provided with Orbix 6. The
firewall proxy service acts as a delegation server: it listens on a fixed port (so it is firewall-
friendly) and delegates all received messages to back-end servers, such as the Naming Service.
Interested readers should look in the OrbixAdministrator’s Guidefor details about this service.

Some people may wish to not use the Orbix firewall proxy service, or they may be us-
ing an older version of Orbix that does not provide that service (the firewall proxy service
was introduced in Orbix 6.0). Thankfully, there is a second approach to making the Nam-
ing Service firewall-friendly. This involves reconfiguring the Naming Service so that it lis-
tens on a fixed port. A Knowledge Base article5 available from the IONA web site explains
the steps required to reconfigure the Naming Service so that it listens on a fixed port. The
orbix ns on fixed port utility automates most of the steps discussed in the Knowledge
Base article, thereby allowing you to complete the reconfiguration faster. Note thatorbix ns

4 The IOR of the Naming Service will actually contain the port of the IMR, so a client’s first invocation upon the
Naming Service will actually be sent to the IMR. The IMR will then redirect the client to Naming Service’s actual
port.

5 www.iona.com/support/articles/3757.360.xml

http://www.iona.com/support/articles/3757.360.xml�

6.7. USINGORBIX NS ONFIXED PORT 69

on fixed port is intended to be used withnon-replicated Naming Services; it hasnot been
designed to reconfigure a replicated Naming Service.

Before usingorbix ns on fixed port , it is strongly recommended that you make a
backup of the Orbix configuration files and thevar directory of your Orbix environment. The
configuration files are held in the directory indicated by theIT CONFIGDOMAINSDIR envi-
ronment variable, and thevar directory is indicated by running the following command:

itadmin variable show o2k.data.root

The reason for performing a backup is that theorbix ns on fixed port utility makes some
very important changes to your Orbix environment. This utility is believed to be bug-free, but if
it misbehaves then it could have the side effect of leaving the Naming Service in a nonworking
state. In such a case, the easiest way to undo the damage is to restore the configuration files and
var directory from their backups. The OrbixAdministrator’s Guidecontains information on
two different ways to backup individual databases of the Orbix services. However, the simplest
way to perform a backup is as follows:

• Stop the Orbix services by running thestop_<domain>_services script, where you
replace<domain> with the name of your Orbix domain. The value of theIT DOMAIN
NAMEenvironment variable indicates the name of your Orbix domain.

• Use the UNIXtar utility or, say,Winzip on Windows to make copies of the configura-
tion files and thevar directory.

• Restart the Orbix services by running thestart_<domain>_services script.

You can get a usage statement oforbix ns on fixed port by running it with the-h
option. The usage statement looks like that shown below:

usage: orbix_ns_on_fixed_port [options]
options are:

-s Silent mode
-n Do not execute commands. Just show them
-l <host> Local host name (example: foo)
-f <host> Fully-qualified host name (example: foo.bar.com)
-port <port> Fixed port
-h Print this usage statement

When you run the utility, youmustspecify the-port , -l and-f options. For example:

orbix_ns_on_fixed_port -port 5000 -l foo -f foo.bar.com

The -port option is used to specify the fixed port on which the Naming Service is to listen.
The -l option specifies the local hostname of the machine. This is used to find the correct
configuration scope for the Naming Service.6 The-f option specifies the hostname or IP address

6 The iona services.naming. <local-host-name > scope stores configuration information for the
Naming Service that runs on the specified host.

70 CHAPTER 6. ORBIX ADMINISTRATION MADE SIMPLE

that will be embedded in the IOR for the Naming Service. You typically use this option to
specify a fully-qualified hostname, such asfoo.bar.com , but if you want you could specify
an IP address or even just the local hostname.

When you runorbix ns on fixed port , it performsmostof the reconfiguration steps
required for the Naming Service to listen on the specified fixed port. However, there are a few
steps remaining that must be completed manually. Theorbix ns on fixed port utility
prints these steps when it terminates:

To finish, you have to do the following...
1. Ensure that "start_<domain>_services" starts itnaming
2. Run "stop_<domain>_services"

(ignore any error messages regarding the Naming Service)
3. Run "start_<domain>_services"

To expand on those notes a bit, you should:

1. Edit the start_<domain>_services UNIX shell script (or Windows batch file),
where you replace<domain> with the name of your Orbix domain. Depending on what
options you choose when creating your Orbix domain, that file may or may not contain a
statement to startitnaming , which is the Naming Service executable. If the file doesnot
startitnaming then you should add the following statement at the end of the file:

itnaming -background run -ORBname iona_services.naming.<host>

Replace<host> with the same host name that you used with the-l option when running
orbix ns on fixed port .

2. Then runstop_<domain>_services , where you replace<domain> with the name
of your Orbix domain. When you run this script, it will complain that it cannot kill the
Naming Service. It is safe to ignore this error, because the Naming Service is already dead.

3. Finally, run start_<domain>_services , where you replace<domain> with the
name of your Orbix domain. This script restarts the Orbix services. As part of doing this,
the Naming Service will listen on the desired port.

6.8 Using the Utilities to Learn About itadmin

By default, the utilities discussed in this chapter echo all theitadmin commands that they
execute. The-s (silent) command-line option instructs these utilities tonot echo theitadmin
commands that they execute.

The default behavior of echoing eachitadmin command as it is executed is a very useful
feature because it means that the utilities can be used as a self-teaching tool to learn more about
itadmin . For example, you can useorbix srv admin to register a server and then look at
the echoeditadmin commands in order to understand the steps involved. You can then use
the itadmin commands discussed below to query the IMR in order to see the relationships
between the createdprocess , orbname andpoa entities in the IMR database.

6.9. USEFUL CONFIGURATION VARIABLES 71

If you are going to type a lot ofitadmin commands interactively then you will quickly
tire of repeatedly typing"itadmin <name-of-command> <arguments>" . Instead, if
you run itadmin without any command-line arguments then you will be put into a Tcl shell.
Within this shell you can type commands without having to give the"itadmin" prefix. Some
useful commands to type within this shell are shown below:

process list
process list -active
process show <process-name>
orbname list
orbname list -active
orbname show <orbname>
poa list
poa list -active
poa show <poa-name>
scope list [<scope-name>]
scope show <scope-name>

In general, thelist version of commands prints a list of all the processes/orbnames/poas/
scopes. The"list -active" version lists only those processes/orbnames/poas that are
currently active (running). Theshow version of a command displays details of the specified
process/orbname/poa/scope. You can find details of all the availableitadmin commands in
the OrbixAdministrator’s Guide.

6.9 Useful Configuration Variables

The Orbix runtime system makes extensive use of runtime configuration information. A com-
plete list of all the runtime configuration variables can be found in an appendix of the Orbix
Administrator’s Guide. Most of the runtime configuration variables are for low-level parts of Or-
bix that users typically do not care about. However,someof the runtime configuration variables
are of a higher-level nature and can be of interest when deploying an application. It is those
interesting configuration variables that this section focuses on.

If you want to use some of these runtime configuration variables in aserverapplication then
a simple way to do so is to list the variables in theruntime config variables entry in an
orbix srv admin description file, for example,payroll.des , and then run:

orbix_srv_admin -register payroll.des

Alternatively, if you want to modify the runtime configuration variables of a server that is
already registered then you can run:

orbix_srv_admin -set_vars payroll.des

If you want to use some of these runtime configuration variables in aclient application then
a simple way to do so is to list the variables in theruntime config variables entry in

72 CHAPTER 6. ORBIX ADMINISTRATION MADE SIMPLE

an orbix set config vars description file., for example,payroll client.des , and
then run:

orbix_set_config_vars payroll_client.des

If an application is currently running when you update its configuration variables then you
will have to stop it and re-start it for it to pick up the new runtime configuration values.

6.9.1 Size of the Thread Pool in Multi-threaded Servers

A server application has a pool of threads that are used for servicing incoming requests for
servants inORBCTRL MODEL(that is, multi-threaded) POAs. The thread pool has an initial
size and can grow and shrink, subject to constraints expressed in some configuration variables.

The default configuration values for the thread pool means it initially contains 5 threads
and it can to grow infinitely large (under a heavy load). These default values are dangerous
because although threads are cheap, theydo consume some resources and an Orbix server that
continuously adds threads to the pool will eventually run out of memory. Instead, you can
safeguard the health of your server by specifying an upper bound on the size of the thread pool.
You can do this as shown in the example below:

set runtime_config_variables {
long thread_pool: high_water_mark "10"
long thread_pool: low_water_mark "10"
long thread_pool: initial_threads "10"
long thread_pool: max_queue_size "500"

}
The above example configures the thread pool to be a fixed size, that it, it cannot grow or

shrink. In general though, you may want the thread pool to be able to grow slightly under a
heavy load and to later shrink when the server is under a lighter load. To do that, you need to
understand the meaning of the configuration variables used. Theinitial threads variable
specifies the initial number of threads in the thread pool. Thehigh water mark specifies the
pool’s maximum size, and thelow water mark specifies the pool’s minimum size. If the all
the threads in the pool are busy and the pool cannot grow then an incoming request will be put
into a queue where it will wait until one of the threads in the thread pool becomes free. The
maximum size of this queue is specified bymax queue size .

The default value ofhigh water mark is -1, which allows the thread pool to grown in-
finitely big (or until the server runs out of memory). The default value oflow water mark
is -1, which means that the thread pool will never shrink when the load on the server decreases.
The default value ofinitial threads is 5, which means that the thread pool initially con-
tains 5 threads. The default value ofmax queue size is -1, which allows the queue to grow
infinitely big (or until the server runs out of memory).

6.9.1.1 Warning for Java Users

In the C++ version of Orbix, all the threads in the thread-pool are available for servicing incom-
ing requests. Unfortunately, the Java version of Orbix uses threads in the thread-pool not just to

6.9. USEFUL CONFIGURATION VARIABLES 73

service incoming requests, but also for other Orbix-internal purposes, such as reading incoming
messages from socket connections. This means that not all the threads in the thread pool are
available for servicing requests. It also means that if you put a limit on the size of the thread pool
in an Orbix/Java server then the server may hang under some circumstances. This is because it
may use up all the threads in the thread pool for monitoring socket connections and not have any
threads left over to service incoming requests or monitor a newly opened socket connection. For
this reason, you are strongly advised tonot impose an upper limit on the size of the thread pool
in an Orbix/Java application. IONA plans to fix this mis-feature of Orbix/Java in a future release.

6.9.2 Specifying References for CORBA Services

When an application callsresolve initial references("NameService") , Orbix
finds the Naming Service by retrieving a stringified object reference from a runtime configuration
variable and callingstring to object() on this stringified object reference. Orbix uses this
technique to locateany service requested in a call toresolve initial references() .
Sometimes, there may beseveralNaming Services installed in an organization. If your applica-
tion is currently pointing to the “wrong” Naming Service (or some other CORBA Service such
as, say, the Trading Service) then you can fix this by modifying your application’s configuration
settings. You do this by obtaining a stringified object reference (or a corbaloc reference) for the
“correct” Naming Service and then set a configuration entry as shown below:

set runtime_config_variables {
string initial_references: NameService :reference "IOR:..."
string initial_references: TradingService :reference "IOR:..."

}

6.9.3 Loading Extra Plug-ins

Orbix is built using a micro-kernel, plug-in architecture, which means that the kernel (core) of
Orbix is very small but it knows low to load additional functionality through “plug-ins”. A
plug-in is implemented as a shared-library/DLL for C++ Orbix, or as a Java class for Java Orbix.

The plug-ins that are loaded into an application by default are shown below:

set runtime_config_variables {
list orb_plugins "local_log_stream,iiop_profile,giop,iiop"

}

The above example shows that commas separate the values in a list. The above example also
illustrates that evenbasicfunctionality, such as the on-the-wire protocol stack (GIOP and IIOP),
is implemented via plug-ins rather than being hard-coded into the core of Orbix. This flexibility
is important because it makes it feasible to plug-in adifferenton-the-wire protocol, if the need
ever arises.

Some plug-ins that you might need to load for some applications include:

local log stream This plug-in is loaded by default. It allows Orbix-generated messages to
be logged to standard error or to a file. This is discussed more in Section6.9.4.

74 CHAPTER 6. ORBIX ADMINISTRATION MADE SIMPLE

system log stream If you load this plug-in then Orbix-generated messages will be written
to syslogon UNIX machines, or to theevent logon Windows machines. This is discussed
more in Section6.9.4.

ots You will need to load this plug-in if your application makes use of the Object Transaction
Service (OTS) CORBA Service. See the OrbixCORBA OTS Programmer’s Guidefor
more details.

shmiop If a client and serverboth load this plug-inand if the client and server are running on
the same computer then they can communicate through shared memory rather than through
IIOP.

iiop tls TLS is the new name for Secure Sockets Layer (SSL) which is an encryption stan-
dard that is popular on the Internet. If you want secure communications between clients
and servers then your applications should load this plug-in. See the OrbixSSL/TLS Guide
for more details.

giop snoop This plug-in uses aninterceptorto examine all the on-the-wire messages that an
application sends or receives. This plug-in can print out diagnostics for each message,
which can be a useful debugging aid. See Section6.9.4for more details.

Each plug-in that is loaded may have its own configuration variables. By convention, a plug-
in called1<name> uses configuration variables with names that have"plugins:<name>:"
as a prefix. For example, configuration variables related to IIOP use"plugins:iiop:" as a
prefix on their names. The use of such prefixes avoids name clashes of configuration variables.
Orbix uses the terminologynamespaceto refer to a prefix that contains a":" character.

You may be curious about how C++ Orbix knowswhich shared-library/DLL to load for a
plug-in, or how Java Orbix knowswhichJava class to load for a plug-in. The answer is that C++
Orbix uses the variable"plugins:<name>:shlib_name" to determine the name of the
shared library , and that Java Orbix uses the variable"plugins:<name>:ClassName" to
determine the name of the Java class.

6.9.4 Controlling Diagnostic Messages

6.9.4.1 Controlling the Destination of Diagnostics

The CORBA specification does not standardize how a CORBA vendor product should generate
diagnostic messages. Because of this, CORBA products generate diagnostic output in a product-
specific way. Whenever Orbix generates a diagnostic message, it logs it by invoking a logging
operation onall the objects of typeIT Logging::LogStream inside the application. This
interface is documented in the OrbixProgrammer’s Referencemanual. If you want Orbix diag-
nostic messages to be logged to, say, a database then you could write an implementation of the
IT Logging::LogStream interface to do that.

Orbix provides two pre-written implementations ofIT Logging::LogStream , both of
which are provided as plug-ins. If these plug-ins are loaded (see Section6.9.3) then Orbix uses

6.9. USEFUL CONFIGURATION VARIABLES 75

them for logging diagnostic information. These plug-ins arenot mutually exclusive, so you can
load neither of them, just one of them or both of them.

One of the logging plug-ins is calledsystem log stream . If this plug-in is loaded then
Orbix diagnostic messages are sent to the system log device. On UNIX, this is calledsyslog,
whereas on Windows it is called theevent log. This plug-in is not loaded by default.

The other logging plug-in is calllocal log stream . If this plug-in is loaded then Orbix
diagnostic messages, by default, are written tostandard error. However, you can redirect these
messages to a file with the following runtime configuration variable:

set runtime_config_variables {
string plugins:local_log_stream:filename "/path/to/server.log"

}

If you do this then Orbix appends a date suffix (in the format".DDMMYYYY") onto the end
of the name of the log file. Rather than log all messages to this file, Orbix opens a new log file
for each day. Thus, after a week of operation, an application would have 7 log files.

6.9.4.2 Log Filters

Another important part of controlling log messages is setting upfilters that determinewhich
messages are logged. The default filter is illustrated below:

set runtime_config_variables {
list event_log:filters " * =WARN+ERR+FATAL"

}

The Orbix runtime system is composed of various sub-systems. These have names like
IT CORE, IT GIOP, IT POAand so on. The" * " character is used as a wildcard to means
all the sub-systems. For each sub-system, you can specify a list of severity levels. These have
names likeINFO, WARN, ERRandFATAL. The elements in the list of severity levels are sepa-
rated by"+" characters. The above example (which is the default filter) causes Orbix to generate
diagnostics for warnings, (non-fatal) errors and fatal errors. You can turn onall diagnostic mes-
sages with the following:

set runtime_config_variables {
list event_log:filters " * =* "

}

The final example, below, illustrates the syntax for selectively enabling different filters for
different sub-systems:

set runtime_config_variables {
list event_log:filters "IT_GIOP= * ,IT_CORE=FATAL, * =WARN+ERR+FATAL"

}

See the OrbixAdministrator’s Guidefor a full list of the names of both sub-systems and
logging severity levels.

76 CHAPTER 6. ORBIX ADMINISTRATION MADE SIMPLE

6.9.4.3 Obtaining Per-request Diagnostics

If you load thegiop snoop plug-in (See Section6.9.3) then Orbix generates diagnostic mes-
sages for each message (such as requests and replies) that are sent and received by an application.
Thegiop snoop README.txt file provided in thedoc sub-directory of an Orbix installation
contains full details on how to enable and use the thegiop snoop plug-in.

6.9.5 Avoiding POA name clashes

Each CORBA server can have POAs, and each POA has a name. The POAs are arranged in a
hierarchy, and the fully-qualified name of a POA is expressed in the form:

full/path/to/POA-name

This syntax is similar in concept to the syntax used to express the/full/path/to/a/file
used in the UNIX file system, except that there isnot a leading"/" when writing a POA’s full
name.

Persistent POAs have to be registered with the IMR (locator daemon). When registering a
persistent POA, you specify theorbname (conceptually, an application) with which the POA is
associated. Transient POAs do not have to be registered, unless a transient POA is a parent (or
ancestor) of a persistent POA.

Within an IMR, thefull/path/to/POA-name entries must be unique for all the reg-
istered, persistent POAs. However, it is possible that two independently developed applica-
tions might have POAs with similar names. To resolve such clashes on the names of POA,
Orbix allows a prefix to be applied to the names of POAs within an application. By regis-
tering different applications with different prefixes for their POAs, you can avoid POA name
clashes. This prefix is obtained from the value of theplugins:poa:root name configu-
ration variable. If you are using theorbix srv admin utility then there is no need to ex-
plicitly set a value for this variable becauseorbix srv admin will do it for you automati-
cally. The value thatorbix srv admin assigns to this configuration variable is determined
by theroot poa name entry in theorbix srv admin description file. If you are using the
orbix set config vars utility then you should explicitly set a value for this variable if you
want to avoid POA name clashes.

6.9.6 Recycling Connection Resources

When a client application communicates with objects in a server application, there will be a
socket connection between the client and the server applications. Note that there will be one
socket connection between a client and server, irrespective of how manyobjectsthe client is
communicating with in the server. CORBA allows the socket connection between a client and
a server to be closed if it isidle, that is, if there are no requests from the client currently being
processed by the server. CORBA does not consider the closing of an idle socket connection
to be an error condition. Rather, if an idle connection is closed then the client application will
transparently re-open the connection if/when it makes another remote call to an object in a server.

6.9. USEFUL CONFIGURATION VARIABLES 77

The Orbix terminology for the automatic closing of idle socket connections isActive Connection
Management(ACM).

ACM is disabled by default, that is, the default behavior of Orbix is that it doesnotclose idle
socket connections. However, you can set some runtime configuration variables to enable ACM.
This is illustrated by the example below:

set runtime_config_variables {
long plugins:iiop:incoming_connections:soft_limit "500"
long plugins:iiop:incoming_connections:hard_limit "600"

long plugins:iiop:outgoing_connections:soft_limit "-1"
long plugins:iiop:outgoing_connections:hard_limit "-1"

}
Thesoft limit variables specify the number of connections at which the Orbix runtime

system (actually the IIOP plug-in) should begin closing connections. However, it may take
the Orbix runtime system some time before it can find a connection that isidle. While one
thread in the Orbix runtime system is searching for idle connections that it can close, more
connections might be established/accepted by other threads. This is why it is necessary to also
specify ahard limit , which determines the maximum number of connections. Above this,
new connection attempts will be rejected. You should always ensure that thehard limit is
greater than thesoft limit . Alternatively, you can set these values to -1, which is the default.
Doing this instructs Orbix to not apply any limits.

As the above example illustrates, hard and soft limits can be specified for bothincoming
and outgoingconnections. The concept ofincomingand outgoing refers to the direction in
which requests flow. Thus, a server application can place a limit on the number of connections
from clients that it will keep open by specifyingsoft limit andhard limit values for the
incoming connections.

It is common formanyclients to connect to a single server, so specifyingincomingcon-
nection limits on the server is important. However, it is very rare for one client application to
open connections tomanyservers. Because of this, it is rarely necessary to specify limits on the
outgoingconnections.

The reason why the default values for connection limits is set to -1 is because there are no
default values that would be suitable for all application loads on all operating systems. Instead,
a user (or system administrator) should consult the documentation for their operating system to
determine how many socket connections the operating system can support before performance
is degraded and then ensure that the Orbix limits are set below this point. Also, if there will be
many applications (each of which might use socket connections) running on the same machine
then you should scale back the Orbix connection limits even further so that a heavily loaded
Orbix server does not cause other applications to become starved of socket connections.

6.9.6.1 Recycling Connections for Other Protocols

The example in Section6.9.6showed how to set up ACM for the IIOP protocol. If your server
uses theshmiop or iiop tls plug-ins then you can enable ACM for these protocols by re-

78 CHAPTER 6. ORBIX ADMINISTRATION MADE SIMPLE

placing iiop in the name of the configuration variables withshmiop or iiop tls . This is
illustrated in the example below:

set runtime_config_variables {
long plugins: iiop tls :incoming_connections:soft_limit "500"
long plugins: iiop tls :incoming_connections:hard_limit "600"

long plugins: iiop tls :outgoing_connections:soft_limit "-1"
long plugins: iiop tls :outgoing_connections:hard_limit "-1"

}

Chapter 7

Generic Synchronization Policies in C++

7.1 Introduction

Writing synchronization code is usually both difficult and non-portable.
Much of the difficulty in writing synchronization code is due to the use of low-level synchro-

nization APIs.
The portability problem arises because neither C nor C++ provide a standard library for syn-

chronization. As a result, many operating systems provide proprietary APIs for synchronization.
Some people write a portability-layer library that hides the proprietary APIs of the underlying
operating systems. Unfortunately, it is common for such libraries to provide a low-level, and
hence difficult to use, API.

In my experience, most uses of synchronization code in multi-threaded applications fall into
a small number of high-level “usage patterns”, or what I callgeneric synchronization policies
(GSPs). This paper illustrates how the use of such GSPs simplify the writing of thread-safe
classes. In addition, this paper presents a C++ class library that implements commonly-used
GSPs.

7.2 Scoped Locks

Threading libraries provide functions that acquire and release mutual exclusion (mutex) locks.
In this paper, I usegetLock() and releaseLock() to denote such functions. A critical
section is code that is bracketed with calls togetLock() andreleaseLock() . For example,
the following is a critical section:

getLock(mutex);
...
releaseLock(mutex);

The above critical section looks simple. However, if the code within a critical section has condi-
tional return statements or conditionally throws exceptions then care must be taken to release
the mutex lock atall exit points of the critical section. Figure7.1shows an example of this.

79

80 CHAPTER 7. GENERIC SYNCHRONIZATION POLICIES IN C++

void foo()
{

getLock(mutex) ;
...
if (...) {

releaseLock(mutex) ;
return;

}
if (...) {

releaseLock(mutex) ;
throw anException;

}
...
releaseLock(mutex) ;

}

Figure 7.1:An operation with a critical section

In general, adding calls toreleaseLock() at every potential exit point of a critical section
clutters up the code, thus making the code more difficult to read and maintain. Indeed, a common
source of bugs in multi-threaded applications is forgetting to add a call ofreleaseLock() at
some of the possible exit points of a critical section.

There is a useful technique that removes the need for the cluttering, error-prone calls to
releaseLock() . This technique involves writing a class—let’s call itScopedMutex —
that callsgetLock() andreleaseLock() in its constructor and destructor. You can see a
pseudocode implementation of this class in Figure7.2.

class ScopedMutex {
public:

ScopedMutex (Mutex & mutex)
: m mutex(mutex)

{
getLock(m mutex);

}
˜ScopedMutex () {

releaseLock(m mutex);
}

protected:
Mutex & m mutex;

};

Figure 7.2:A pseudocodeScopedMutex class

7.3. GENERIC SYNCHRONIZATION POLICIES 81

Now, instead of explicitly callinggetLock() and releaseLock() in the body of an
operation, you can just declare aScopedMutex variable local to the function. Figure7.3shows
an example of this. When the function is called, the constructor of theScopedMutex variable
is invoked and this callsgetLock() . Then, when the function terminates, the destructor of the
ScopedMutex variable is invoked and this callsreleaseLock() . This happens regardless
of whether the function returns early (line 1), throws an exception (line 2) or runs to completion
(line 3).

void foo()
{

ScopedMutex scopedLock(mutex) ;
...
if (...) return; // line 1
if (...) throw anException; // line 2
...

} // line 3

Figure 7.3:An operation with a scoped mutex lock

If you compare the code in Figures7.1and7.3 then you will see that the latter code (which
uses theScopedMutex class) is shorter and easier to read than the former.

This technique of using a constructor/destructor class for synchronization ispartially well-
known within the C++ community. I say this for two reasons.

First, my experience as a consultant and trainer has given me the opportunity to work with
many C++ programmers in many different organization. I have found that about half the pro-
grammers I work with are familiar with this technique and view it as being a basic C++ idiom,
while the same technique is new to the other half.

Second, among programmers who have used this constructor/destructor technique for syn-
chronization, usage of this technique invariably is confined to mutual exclusion (andoccasionally
readers-writer locks). However, this technique is applicable to other, more complex synchroniza-
tion code too (which is the focus of this paper).

Before discussing how to apply this technique to other synchronization code, it is neces-
sary to take a slight detour. In particular, I have to introduce a new concept: that ofgeneric
synchronization policies.

7.3 Generic Synchronization Policies

C++ supportstemplatetypes. For example, a list class might be written as:

template<T> class List { ... };
Once implemented, this template type can be instantiated multiple times to obtain, say, a list

of int , a list ofdouble and a list ofWidget :

82 CHAPTER 7. GENERIC SYNCHRONIZATION POLICIES IN C++

List<int> myIntList;
List<double> myDoubleList;
List<Widget> myWidgetList;

The ability to define template types is not unique to C++. Several other languages pro-
vide similar functionality, although often there are differences in terminology and syntax. For
example, some languages use the termgeneric typesrather thantemplate types, and the type
parameters might be enclosed within[and] instead of< and>.

The concept of genericity is not restricted to types. It can be applied to synchronization too,
as I now discuss.

7.3.1 The Mutex and Readers-writer Policies

Using a pseudocode notation, I can declare some well-known synchronization policies as fol-
lows:

Mutex[Op]
RW[ReadOp, WriteOp]

In this notation, the name of the generic synchronization policy is given first, and is then fol-
lowed by a parameter list enclosed in square brackets. Each parameter denotes a set of operation
names. For example, theMutex policy is instantiated upon a set of operations (Op), while the
RW(readers-writer) policy is instantiated upon a set of read-style operations (ReadOp) and a set
of write-style operations (WriteOp).

Consider a class that has two read-style operations calledOp1 andOp2, and a write-style
operation calledOp3. I instantiate theRWpolicy upon these operations as follows:

RW[{Op1, Op2}, {Op3}]

Likewise, an instantiation of theMutex policy upon these three operations is written as
follows:

Mutex[{Op1, Op2, Op3 }]

7.3.2 The Producer-consumer Policy

The producer-consumer policy is useful when a buffer is used to transfer data from one thread
(the producer) to another thread (the consumer). The producer threadputsitems into the buffer
and then, sometime later, the consumer threadgetsthese items. If the consumer thread tries to get
an item from an empty buffer then it will be blocked until the buffer is not empty. Furthermore,
the put-style and get-style operations execute in mutual exclusion; this is to prevent the buffer
from becoming corrupted due to concurrent access. This policy is written as follows:

ProdCons[PutOp, GetOp, OtherOp]

7.4. GENERIC SYNCHRONIZATION POLICIES IN C++ 83

OtherOp denotes any other (non put-style and non get-style) operations on the buffer class.
For example, perhaps there is an operation on the buffer that returns a count of how many items
are currently in the buffer. Such an operation might need to run in mutual exclusion with the put-
style and get-style operations to ensure its correct operation. If a buffer-style class has operations
called insert() , remove() andcount() then you can instantiate theProdCons policy
on the class as follows:

ProdCons[{insert }, {remove }, {count }]

If the class does not have acount() operation then you can instantiate theProdCons
policy on it as follows:

ProdCons[{insert }, {remove }, {}]

In this case, theOtherOp parameter of the policy is instantiated upon anemptyset of operations
names.

7.3.3 The Bounded Producer-consumer Policy

A common variation of the producer-consumer policy is theboundedproducer-consumer policy,
in which the buffer has a fixed size. This prevents the buffer from growing infinitely large if one
thread puts items into the buffer faster than the other thread can get them. In this policy, if the
producer thread tries to put an item into an already-full buffer then it will be blocked until the
buffer is not full. This policy is written as follows:

BoundedProdCons (int size) [PutOp, GetOp, OtherOp]

Notice that the size of the buffer is specified as a parameter to the name of the policy. Such
parameters are usually instantiated upon a corresponding parameter to the constructor of the
buffer; an example of this will be shown later (in Figure7.7on page87).

7.4 Generic Synchronization Policies in C++

The discussion in Section7.3focussed on theconceptof GSPs. I now explain how to implement
GSPs in C++.

Figure 7.4 shows the mapping of theMutex[Op] policy into a C++ class using POSIX
threads. Note that, in order to keep the code concise, error checks on the return values of the
POSIX threads library calls have been omitted.

The mapping from a GSP into a C++ class is performed as follows:

1. The name of the C++ class is the same as the name of the GSP, but with a"GSP " prefix.
The prefix is used to prevent name-space pollution. So, in Figure7.4 theMutex GSP is
implemented by theGSPMutex class.

84 CHAPTER 7. GENERIC SYNCHRONIZATION POLICIES IN C++

1 class GSP Mutex {
1 public:
3 GSPMutex() { pthread mutex init(m mutex, 0); }
4 ˜GSP Mutex() { pthread mutex destroy(&m mutex); }
5
6 class Op {
7 public:
8 Op(GSP Mutex &) : m data(data)
9 { pthread mutex lock(&m data.m mutex); }

10 ˜Op() { pthread mutex unlock(&m data.m mutex); }
11 protected:
12 GSPMutex & m data;
13 };
14
15 protected:
17 pthread mutex t m mutex;
16 friend class ::GSP Mutex::Op;
18 };

Figure 7.4:Mapping ofMutex[Op] into a C++ class

2. The class has one or more instance variables (line 17) that provide storage for the mutex.
The constructor and destructor of the class (lines 3 and 4) initialize and destroy the instance
variable(s).

3. The Mutex[Op] GSP has a parameter calledOp. This translates into a nested class
(lines 6–13) with the same name. If a GSP has several parameters then each parameter
translates into a separate nested class; an example of this will be shown later.

4. Each nested class has one instance variable (line 12), which is a reference to the outer
class. This instance variable is initialized from a parameter to the constructor of the inner
class (line 8).

5. The constructor and destructor of the nested class get and release the lock (lines 9 and 10)
stored in the instance of the outer class.

As another example, Figure7.5shows how theRW[ReadOp, WriteOp] GSP maps into
a C++ class. Notice that because this GSP takes two parameters, there are two nested classes.

Instantiating a GSP upon the operations of a C++ class involves the following three steps:

1. #include the header file for the GSP. The name of the header file is the same as name
of the GSP class, but written in lowercase letters. For example, the header file for the
GSPRWclass is"gsp rw.h" .

2. Add an instance variable to the C++ class that is to be synchronized. The instance vari-
able’s type is that of the GSP’s outer class.

7.4. GENERIC SYNCHRONIZATION POLICIES IN C++ 85

class GSP RW{
public:

GSPRW() { / * initialize the readers-writer lock * / }
˜GSP RW() { / * destroy the readers-writer lock * / }

class ReadOp {
public:

ReadOp(GSP RW & data) : m data(data)
{ / * acquire read lock * / }

˜ReadOp () { / * release read lock * / }
protected:

GSPRW & m_data;
};

class WriteOp {
public:

WriteOp (GSP RW & data) : m data(data)
{ / * acquire write lock * / }

˜WriteOp () { / * release write lock * / }
protected:

GSPRW & m_data;
};

protected:
... // Instance variables required to implement a

// readers-writer lock
friend class ::GSP_RW::ReadOp;
friend class ::GSP_RW::WriteOp;

};

Figure 7.5:TheGSPRWclass with nestedReadOpandWriteOp classes

3. Inside the body of each operation that is to be synchronized, declare a local variable, the
type of which is that of a nested class of the GSP.

The instantiation ofRW[{Op1, Op2}, {Op3}] in Figure7.6 illustrates these steps.
As a final example, Figure7.7shows a class that is instantiated with:

BoundedProdCons (int size) [PutOp, GetOp, OtherOp]

This policy takes a parameter that indicates the size of the buffer. This parameter is obtained
from thebufSize parameter of the class’s constructor.

86 CHAPTER 7. GENERIC SYNCHRONIZATION POLICIES IN C++

#include "gsp rw.h"
class Foo {
public:

Foo() { ... }
˜Foo() { ... }
void Op1(...) {

GSPRW::ReadOp scopedLock(m sync);
... // normal body of operation

}
void Op2(...) {

GSPRW::ReadOp scopedLock(m sync);
... // normal body of operation

}
void Op3(...) {

GSPRW::WriteOp scopedLock(m sync);
... // normal body of operation

}
protected:

GSPRW msync;
... // normal instance variables of class

};

Figure 7.6:Instantiation ofGSPRW

7.5 Support for GSPs in Other Languages

The implementation of GSPs shown in this paper relies upon constructors and destructors to
automate the execution of synchronization code. Although object-oriented languages usually
provide constructors, not all object-oriented languages provide destructors, especially languages
that have built-in garbage collectors. This may lead readers to conclude that GSPs cannot be
implemented in existing languages that do not provide destructors. While this may be so, it
would be possible for designers offuture languages to incorporate support for GSPs into their
language design. For example, in my Ph.D. thesis [McH94] I show how to add support for GSPs
to the compiler of an object-oriented language that uses garbage collection instead of destructors.

7.6 A Critique of Generic Synchronization Policies

I now point out some benefits and potential drawbacks of GSPs.

7.6.1 Strengths of GSPs

First, GSPs provide a good form of skills reuse. In particular, it is a lot easier tousea GSP
than it is toimplementone. Thus, a programmer skilled in synchronization programming can

7.6. A CRITIQUE OF GENERIC SYNCHRONIZATION POLICIES 87

#include "gsp boundedprodcons.h"
class WidgetBuffer {
public:

WidgetBuffer(int bufSize) : m sync(bufSize) { ... }
˜WidgetBuffer() { ... }

void insert(Widget * item) {
GSPBoundedProdCons::PutOp scoped lock(m sync);
... // normal body of operation

}

Widget * remove() {
GSPBoundedProdCons::GetOp scoped lock(m sync);
... // normal body of operation

}
protected:

GSPBoundedProdCons m sync;
... // normal instance variables of class

};

Figure 7.7:Instantiation ofGSPBoundedProdCons

implement whatever GSPs are needed for a project, and then other, lesser skilled, programmers
can use these pre-written GSPs.

Second, GSPs aid code readability and maintainability by separating synchronization code
from the “normal”, functional code of a class.

Third, as I discussed in Section7.2, placing synchronization code in the constructor and
destructor of the GSP classes means that locks are released even if an operation terminates by
returning early or throwing an exception. This eliminates a common source of bugs in multi-
threaded programs.

Fourth, GSPs provide not only ease of use; they also provide a portability layer around the un-
derlying synchronization primitives. Of course, some companies have developed in-house, porta-
bility libraries that hide the differences between synchronization primitives on various platforms,
and some other companies make use of third-party portability libraries, such as the Threads.h++
library from RogueWave. The use of GSPs is compatible with such existing libraries: GSPs can
be implemented just as easily on top of Threads.h++ (or some other portability library) as they
can be implemented directly on top of operating-system specific synchronization primitives.

Finally, the implementation of a GSP can be inlined. Thus, the use of GSPs need not impose
a performance overhead.

88 CHAPTER 7. GENERIC SYNCHRONIZATION POLICIES IN C++

7.6.2 Potential Criticisms of GSPs

Some readers might be thinking: “GSPs are limited; they cannot handleall the synchronization
needs I might have.” However, in many activities, a disproportionately large amount of results
come from a relatively small amount of investment. This is generally known as the 80/20 princi-
ple [Koc00]. In my experience, this applies to the synchronization requirements of applications.
A small set of GSPs is likely to suffice for most of the synchronization needs of programmers.
So, even if a small set of pre-written GSPs cannot handleall the synchronization needs that a
programmer will face, the 80/20 principle suggests that the use of GSPs would be usefuloften
enoughto justify their use.

Of course, people arenot restricted to just a small set of pre-written GSPs. People can
define new GSPs. For example, perhaps a programmer needs to write some project-specific
synchronization code. Even if this synchronization code will be used in just one place in the
project, it is hardly any additional work to implement this as a GSP and then instantiate it, rather
than to implement it “in-line” in the operations of a class. Doing do offers several benefits:

1. Implementing the synchronization code as a GSP is likely to improve readability and main-
tainability of the synchronization codeand the sequential code of the project.

2. If the programmer later discovers another place that needs to use the same policy then the
GSP can be re-used directly, rather than having to re-use in-lined code via copy-n-paste.

Some other readers might be thinking: “GSPs are not new; ‘GSP’ is just a new name for
an existing C++ programming idiom”. The claim that GSPs are based on an already-known
C++ idiom (theScopedMutex class discussed in Section7.2) is entirely true. Indeed, the
ScopedMutex class is a GSP in all but name. However, as discussed in Section7.2, the C++
idiom that underlies GSPs was previously used only for mutex andoccasionallythe readers-
writer policies. A significant contribution of GSPs is in pointing out that the same technique can
be used for most, if not all, synchronization policies.

7.7 Issues Not Addressed by GSPs

GSPs illustrate the 80/20 principle: most of the synchronization requirements of programmers
can be satisfied by a small collection of GSPs. However, there are some synchronization issues
that arenot tackled by GSPs. I now briefly discuss these issues below, so that readers can be
forewarned about when the use of GSPs is not suitable.

7.7.1 Thread Cancellation

The POSIX threads specification provides a mechanism for a thread to becancelled, that is,
terminated gracefully. When a thread is cancelled, it is important that the thread has a chance
to do some tidying up before it is terminated, for example, the thread may wish to release locks
that it holds. This is achieved by having the programmer register callback functions that will be
invoked in the event of the thread being cancelled. The current implementation of GSPs does

7.8. GSP CLASS LIBRARY 89

not provide support for the thread cancellation capability of POSIX threads. This is not due to
any intrinsic incompatibility between GSPs and thread cancellation. Rather it is simply due to
the author never having needed to make use of thread cancellation. Integrating GSPs with thread
cancellation is left as an exercise to interested readers.

7.7.2 Timeouts

Some thread packages provide a timeout capability on synchronization primitives. By using this,
a programmer can specify an upper time limit on how long a thread should wait to, say, get a
lock. The current implementation of GSPs doesnot provide a timeout capability. There are two
reasons for this.

First, timeouts are rarely needed and hence, by following the 80/20 principle, I decided to
not bother supporting them.

Second, implementing a timeout capability is relatively complex with the APIs of some
threads packages. For example, aMutex policywithouta timeout capability can be implemented
trivially in POSIX threads by invoking functions upon an underlying mutex type. In contrast,
implementing aMutex policy with a timeout capability in POSIX threads necessitates the use
of a mutex variableand a condition variable; the resulting algorithm is more complex to write
and maintain, and it incursat leasttwice as much performance overhead as aMutex without
a timeout capability. This additional performance overhead suggests that if some programmers
decide they require aMutex policy with a timeout capability then they should implement it as
anewGSP, say,TimeoutMutex , rather than add the timeout capability to the existingMutex
policy. In this way, programmers can use theTimeoutMutex policy on the few occasions
when they need to, and can use the more efficientMutex policy on all other occasions.

7.7.3 Lock Hierarchies

GSPs are useful for classes or objects that have self-contained synchronization. However, some-
times the synchronization requirements ofseveralclasses are closely intertwined, and a pro-
grammer needs to acquire locks on two (or more) objects before carrying out a task. The need
to acquire locks on several objects at the same time is commonly referred to as alock hierarchy.
Attempting to acquire a lock hierarchy can result in deadlock if done incorrectly. Algorithms
for acquiring lock hierarchies safely are outside the scope of this paper, but can be found else-
where [But97]. The point to note is that algorithms for acquiring lock hierarchies safely require
unhindered access to the locking primitives. This is in opposition to GSPs, which completely
encapsulate the underlying synchronization primitives.

7.8 GSP Class Library

This paper accompanies a library of GSP classes. You can download this paper, and its library
from www.CiaranMcHale.com/download. The library implements all the GSPs discussed in
this paper, that is,GSPMutex , GSPRW, GSPProdCons and GSPBoundedProdCons .

http://www.CiaranMcHale.com/download�

90 CHAPTER 7. GENERIC SYNCHRONIZATION POLICIES IN C++

The library implements these GSPs for the following threads packages: Solaris threads, DCE
Threads, POSIX threads and Windows threads. Dummy implementations of these GSPs for
non-threaded systems are also provided; this makes it possible to write a class that can be used
in both sequential and multi-threaded applications.

All the GSP classes are implemented with inline code in header files. Because of this, to
make use of a GSP you need only#include the corresponding header file; there is no GSP
library to link into your application. The name of the header file for a GSP is the same as the
name of the GSP class, but written in lowercase letters. For example, the header file for the
GSPRWclass is"gsp rw.h" .

You should use the-D<symbol_name> option on your C++ compiler to define one of the
following symbols:

• P_USE_WIN32_THREADS

• P_USE_POSIX_THREADS

• P_USE_DCE_THREADS

• P_USE_SOLARIS_THREADS

• P_USE_NO_THREADS

The symbol instructs the GSP class which underlying threading package it should use.

7.9 Acknowledgments

The concept of GSPs has its roots in my Ph.D. thesis [McH94]. Research for this Ph.D. was
partially funded by the Comandos ESPRIT project and was carried out while I was a member of
the Distributed Systems Group (DSG) in the Department of Computer Science, Trinity College,
Dublin, Ireland. I wish to thank DSG for their support. I also wish to thank colleagues in IONA
Technologies for their comments on earlier drafts of this paper.

Bibliography

[But97] David Butenhof.Programming with POSIX Threads. Addison-Wesley, 1997.

[Koc00] Richard Koch.The 80/20 Principle: The Secret of Achieving More With Less. Nicholas
Breealey Publishing Ltd., May 2000. ISBN: 187881680. 312 pages.

[McH94] Ciaran McHale.Synchronisation in Concurrent, Object-oriented Languages: Expres-
sive Power, Genericity and Inheritance. PhD thesis, Department of Computer Science,
Trinity College, Dublin 2, Ireland, October 1994.

[SC] Henry Spencer and Geoff Collyer. #ifdef Considered Harmful, or Portability Experi-
ences With C News. InProceedings of Summer 1992 UNENIX, pages 185–197.

91

92 BIBLIOGRAPHY

